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H osted cloud computing has sig-
nif icantly lowered the barrier 
for creating new networked ser-

vices. Likewise, experimental facili-
ties such as the Global Environment 
for Network Innovations (GENI; www.
geni.net) let researchers perform large-
scale experiments on a “slice” of shared 
infrastructure. By letting tenants share 
physical resources, virtualization is 
a key technology in these infrastruc-
tures. Although virtual machines are 
now the standard abstraction for shar-
ing computing resources, the right 
abstraction for networks is a subject of 
ongoing debate.

Existing solutions differ in the level 
of detail they expose to individual ten-
ants. Amazon Elastic Compute Cloud 

(EC2) offers a simple abstraction in 
which all of a tenant’s virtual machines 
can reach each other. Nicira extends 
this “one big switch” model by offering 
programmatic control at the network 
edge to enable, for example, improved 
access control (see http://nicira.com/
en/network-virtualization-platform). 
Oktopus exposes a network topology so 
tenants can perform customized rout-
ing and access control based on knowl-
edge about their own applications and 
traffic patterns.1

Each abstraction is most appropri-
ate for a different class of tenants. As 
more companies move to the cloud, 
providers must go beyond network 
bandwidth sharing to support a wider 
range of abstractions. With a flexible 

Network virtualization gives each “tenant” in a data center its own network 

topology and control over its traffic flow. Software-defined networking offers 

a standard interface between controller applications and switch-forwarding 

tables, and is thus a natural platform for network virtualization. Yet, supporting 

numerous tenants with different topologies and controller applications raises 

scalability challenges. The FlowN architecture gives each tenant the illusion 

of its own address space, topology, and controller, and leverages database 

technology to efficiently store and manipulate mappings between virtual 

networks and physical switches.
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network virtualization layer, a cloud provider 
can support multiple abstractions ranging from 
a simple “one big switch” abstraction (in which 
tenants don’t need to configure anything) to 
arbitrary topologies (in which tenants run their 
own control logic). The key to supporting vari-
ous abstractions is a flexible virtualization layer 
that supports arbitrary topologies, address and 
resource isolation, and custom control logic.

Supporting numerous tenants with differ-
ent abstractions raises scalability challenges. 
For example, supporting virtual topologies 
requires that tenants be able to run their own 
control logic and learn about relevant topology 
changes. Software-defined networking (SDN) is 
an appealing platform for network virtualiza-
tion because each tenant’s control logic can run 
on a controller rather than on physical switches. 
In particular, OpenFlow offers a standard API 
for installing packet-forwarding rules, querying 
traffic statistics, and learning about topology 
changes.2 Supporting multiple virtual networks 
with different topologies requires a way to map 
a rule or query issued on a virtual network to 
the corresponding physical switches, and to map 
a physical event (such as a link or switch failure) 
to the affected virtual components. Any virtu-
alization solution must perform these mapping 
operations quickly, to give each tenant real-time 
control over its virtual network.

Here, we present FlowN, an efficient and 
scalable virtualization solution. FlowN is built 
on top of SDN technology to provide program-
mable control over a network of switches. 
Tenants can specify their own address space, 
topology, and control logic. The FlowN archi-
tecture leverages advances in database tech-
nology to scalably map between the virtual 
and physical networks. Similarly, FlowN uses 
a shared controller platform, analogous to  
container-based virtualization, to efficiently 
run tenants’ controller applications. Experiments 
with our prototype FlowN system, built as an 
extension to the NOX3 OpenFlow controller, 
show that these two design decisions lead to a 
fast, flexible, and scalable solution for network 
virtualization.

Network Virtualization
For hosted and shared infrastructures, as with 
cloud computing, providers should fully vir-
tualize an SDN to represent the network to 
tenants. We next look at the requirements for 

virtualization in terms of specifying and isolat-
ing virtual infrastructures.

SDN Controller Application
To support the widest variety of tenants, a cloud 
provider should let each one specify custom 
control logic on its own network topology. SDN 
is quickly gaining traction as a way to program 
the network. In SDN, a logically centralized 
controller manages the collection of switches 
through a standard interface, letting the soft-
ware control switches from different vendors. 
With the OpenFlow standard,2 for example, 
the controller’s interface to a hardware switch 
is effectively a flow table with a prioritized 
list of rules. Each rule encompasses a pattern 
that matches bits of the incoming packets, and 
actions that specify how to handle these pack-
ets. These actions include forwarding out of a 
specific port, dropping the packet, or sending 
the packet to the controller for further process-
ing. The software controller interacts with the 
switches (for instance, handling packets sent to 
the controller) and installs the flow-table entries 
(for example, installing rules in a series of 
switches to establish a path between two hosts).

With FlowN, each tenant can run its own 
controller application. Of course, not all tenants 
need this much control. Tenants wanting a sim-
pler network representation can simply choose 
from default controller applications, such as 
all-to-all connectivity (similar to what Amazon 
EC2 offers) or an interface similar to a router (as 
with RouteFlow4). This default controller appli-
cation would run on top of the virtualization 
layer that FlowN provides. As such, tenants can 
decide whether they want full network control 
or a preexisting abstraction that matches their 
needs.

Virtual Network Topology
In addition to running a controller application, 
tenants also specify a network topology. This 
lets each tenant design a network for its own  
needs, such as favoring low latency for high-
performance computing workloads or a high 
bisection bandwidth for data processing work-
loads.5 With FlowN, each virtual topology con-
sists of nodes, interfaces, and links. Virtual 
nodes can be either a server (virtual machine) 
or an SDN-based switch. Each node has a set 
of virtual interfaces that connect to other vir-
tual interfaces via virtual links. Each virtual  
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component can include resource constraints — 
for example, the maximum number of flow-table 
entries on the switch, the number of cores on a 
server, or the bandwidth and maximum latency 
for virtual links. The cloud provider runs an 
embedding algorithm6 to map the requested vir-
tual resources to the available physical ones.

Importantly, with full virtualization, vir-
tual topologies are decoupled from the physical 
infrastructure. This is in contrast to “slicing” 
the physical resources (as occurs with Flow
Visor7), which lets tenants run their own con-
troller over a portion of the traffic and a subset 
of the physical network. However, with slicing, 
the mapping between virtual and physical topol-
ogies is visible to the tenants. With FlowN, map-
pings aren’t exposed; instead, tenants simply see 
their virtual networks. With this decoupling, 
cloud providers can offer virtual topologies with 
richer connectivity than the physical network, 
or remap virtual networks to hide the effects of 
failures or planned maintenance. Virtual nodes, 
whether switches or virtual machines, can move 
to different physical nodes without changing 
the tenant’s network view.

Address Space and Bandwidth Isolation
Each tenant has an address space, defined by 
fields in the packet headers (source and destina-
tion IP address, TCP port numbers, and so on). 

Rather than divide the available address space 
among tenants, FlowN present virtual address 
spaces to each application. This gives each ten-
ant control over all fields within the header (for 
instance, two tenants can use the same private 
IP addresses). To do this, the FlowN virtualiza-
tion layer maps between the virtual and physi-
cal addresses. To distinguish between the traffic 
and rules for different tenants, the edge switches 
encapsulate incoming packets with a protocol- 
agnostic extra header, transparent to the ten-
ant’s virtual machines and controller applica-
tion. This extra header (for example, a virtual 
LAN, or VLAN) simply identifies the tenant — 
we don’t run the associated protocol logic (for 
example, per the VLAN spanning-tree protocol).

In addition to address-space isolation, the vir-
tualization solution must support bandwidth iso-
lation. Although current SDN hardware doesn’t 
let network controllers limit bandwidth usage, 
the recent OpenFlow specification includes this 
capability.8 Using embedding algorithms, we 
guarantee bandwidth to each virtual link. As 
support for enforcing these allocations becomes 
available, we can incorporate them into FlowN.

FlowN Architecture Overview
Hosted cloud infrastructures are typically large 
datacenters that have many tenants. As such, 
our virtualization solution must scale in both 
the physical network’s size and the number of 
virtual networks. Being scalable and efficient is 
especially critical in SDNs, where packets are 
not only handled in the hardware switches, but 
can also be sent to the centralized controller for 
processing.

Virtualization has two main performance 
issues in an SDN context. First, an SDN con-
troller must interact with switches through a 
reliable communication channel (such as SSL 
over TCP) and maintain a current view of the 
physical infrastructure (for example, which 
switches are alive). This incurs both mem-
ory and processing overhead, and introduces 
latency. Second, with virtualization, any inter-
action between a tenant’s controller application 
and the physical switches must go through a 
mapping between the virtual and physical net-
works. As the number of virtual and physical 
switches increases, performing this mapping 
becomes a limiting factor in scalability.

To overcome these issues, the FlowN archi-
tecture (see Figure 1) is based around two key 

Figure 1. System design. The FlowN architecture lets tenants write 
arbitrary controller software to fully control their own address 
space, defined by the fields in the packet header, and uses modern 
database technology to perform the mapping between the virtual 
and physical address space.
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design decisions. First, FlowN lets tenants write 
arbitrary controller software that has full con-
trol over the address space and can target an 
arbitrary virtual topology. However, we use a 
shared controller platform (such as NOX3) rather 
than running a separate controller for each ten-
ant. This approach is analogous to container-
based virtualization such as LXC for Linux 
(http://lxc.sourceforge.net) or FreeBSD Jails 
(www.freebsd.org/doc/en_US.ISO8859-1/books/
handbook/jails.html). Second, we use modern 
database technology to perform the mapping 
between the virtual and physical address space. 
This provides a scalable solution that’s easily 
extensible as new functionality is needed.

Container-Based Virtualization
Each tenant has a controller application that 
runs on top of its virtual topology. This appli-
cation consists of handlers that respond to net-
work events (such as topology changes, packet 
arrivals, and new traffic statistics) by sending 
new commands to the underlying switches. Each 
application should have the illusion //that it?// 
runs on its own controller. However, running a 
full-fledged controller for each tenant is unnec-
essarily expensive. Instead, FlowN supports 
container-based virtualization by mapping API  
calls in the NOX controller back and for th 
between the physical and virtual networks.

Full Controller Virtualization Overhead
Running a separate controller for each tenant 
seems like a natural way to support network 
vir tualization. In this solution, the vir tu-
alization system exchanges OpenFlow mes-
sages directly with the underlying switches, 
and with each tenant’s controller. This system 
maintains the relationships between physical 
and virtual components, and whatever encap-
sulation is applied to each tenant’s traff ic. 
When physical events happen in the network 
(for example, a virtual link or switch failure, 
or a packet-in event for a particular virtual 
network), the system translates them to one 
or more virtual events and sends the corre-
sponding OpenFlow message to the appropriate 
tenants. Similarly, when a tenant’s controller 
sends an OpenFlow message, the virtualization 
system converts the message (for example, by 
mapping virtual switch identifiers to physical 
switch identifiers, including the tenant-specific 
encapsulation header in the packet-handling  

rules) before sending a message to the physical 
switch.

The FlowVisor system follows this approach,7 
virtualizing the switch data plane by mapping 
OpenFlow messages sent between the switches 
and the per-tenant controllers. Using the Open-
Flow standard as the interface to the virtualiza-
tion system has some advantages (tenants can 
select any controller platform, for instance), but 
introduces unnecessary overhead. Repeatedly 
marshalling and unmarshalling parameters in 
OpenFlow messages incurs extra latency. Run-
ning a complete controller instance for each 
tenant involves running a large code base, 
which consumes extra memory. Periodically 
checking for the separate controllers’ “liveness” 
incurs additional overhead. The overhead for 
supporting a single tenant might not be that 
significant. However, when we consider that 
the virtualization layer will now have to pro-
vide the full interface of switches for each vir-
tual switch (which will outnumber the physical 
switches by at least an order of magnitude), the 
cumulative overhead is significant — requiring 
more computing resources and incurring extra, 
unnecessary latency.

Container-Based Controller Virtualization
Instead, we adopt a solution inspired by container- 
based virtualization, in which a shared kernel 
runs multiple user-space containers with inde-
pendent name spaces and resource scheduling. 
FlowN is a modified NOX controller that can 
run multiple applications, each with its own 
address space, virtual topology, and event handlers. 
Rather than map OpenFlow protocol messages, 
FlowN maps between NOX API calls. In essence, 
FlowN is a special NOX application that runs its 
own event handlers that call tenant-specific event 
handlers. For example, when a packet arrives at the 
controller, FlowN runs its packet-in event handler, 
identifying the appropriate tenant (based on the 
VLAN tag on the packet, for example) and invok-
ing that tenant’s own packet-in handler. Similarly, 
if a physical port fails, FlowN’s port-status event 
handler identifies the virtual links traversing the 
failed physical port, and invokes the port-status 
event handler for each affected tenant with the ID 
of its failed virtual port.

Simi larly, when a tenant’s event han-
dler invokes an API call, FlowN intercepts 
the call and translates between the virtual and  
physical components. Suppose a tenant calls a 
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function that installs a packet-handling rule in a 
switch. FlowN maps the virtual switch ID to the 
corresponding physical switch’s identifier, checks 
that the tenant hasn’t exceeded its allotted space 
for rules on that switch, and modifies the pattern 
and actions in the rule. When modifying a rule, 
FlowN changes the pattern to include the tenant-
specific VLAN tag, and the actions to forward on 
to the physical ports associated with the tenant’s 
virtual ports. Next, FlowN invokes the underly-
ing NOX function to install the modified rule in 
the associated physical switch. FlowN follows a 
similar approach to intercept other API calls for 
removing rules, querying traffic statistics, send-
ing packets, and so on.

Each tenant’s event handlers run within its 
own thread. Although we haven’t incorporated 
any strict resource limits, CPU scheduling pro-
vides fairness among the threads. Furthermore, 
running a separate thread per tenant protects 
against a tenant’s controller application not 
returning (for example, having an infinite loop) 
and preventing other controller applications 
from running.

Database-Driven Mappings
Container-based controller virtualization reduces 
the overhead of running multiple controller 
applications. However, any interaction between 
a virtual topology and the physical network 
still requires a mapping between virtual and 
physical spaces. This can easily become a bot-
tleneck, which FlowN overcomes by leveraging 
advances in database technology.

Virtual Network Mapping Overhead
To provide each tenant with its own address space 
and topology, FlowN maps between virtual and 
physical resources. It encapsulates tenants’ 
packets with a unique header field (for example, 
a VLAN tag) as they enter the network. To sup-
port numerous tenants, the switches swap the 
labels at each hop in the network. This lets a 
switch classify packets based on the physical 
interface port, the label in the encapsulation 
header, and the fields the tenant application has 
specified. Each switch can thus uniquely deter-
mine which actions to perform.

The virtualization software running on the 
controller determines these labels. A virtual-
to-physical mapping occurs when an applica-
tion modifies the f low table (adds a new f low 
rule, for example). The virtualization layer must 

alter the rules to uniquely identify the virtual 
link or switch. A physical-to-virtual mapping 
occurs when the physical switch sends a mes-
sage to the controller (as when a packet doesn’t 
match any flow-table rule). The virtualization 
layer must de-multiplex the packet to the right 
tenant, and identify the right virtual port and 
virtual switch.

These mappings can occur either one-to-
one, as when installing a new rule or handling a 
packet sent to the controller, or one-to-many, as 
with link failures that affect multiple tenants. 
In general, these mappings are based on various 
combinations of input and output parameters. 
Using a custom data structure with custom code 
to perform these mappings can easily become 
unwieldy, leading to software that’s difficult to 
maintain and extend.

More importantly, this custom software 
would need to scale across multiple physical con-
trollers. Depending on the mappings’ complex-
ity, a single controller machine eventually hits a 
limit on how many mappings it can perform per 
second. To scale further, the controller can run 
on multiple physical servers. With custom code 
and in-memory data structures, distributing the 
state and logic in a consistent fashion becomes 
extremely difficult.

FlowVisor takes this custom data-structure 
approach.7 Although FlowVisor doesn’t provide 
full virtualization — it instead slices the net-
work resources — it must still map an incom-
ing packet to the appropriate slice. In some 
cases, hashing can help perform a fast lookup, 
but this isn’t always possible. For example, for 
the one-to-many physical to virtual mappings, 
FlowVisor iterates over all tenants, and for each 
tenant, it performs a lookup with the physical 
identifier.

Topology Mapping with a Database
Rather than using an in-memory data structure 
with custom mapping code, FlowN uses modern 
database technology. Both the topology descrip-
tions and the assignment to physical resources 
lend themselves directly to a database-style 
relational model. Each vir tual topology is 
uniquely identified by some key, and consists of 
several nodes, interfaces, and links. Nodes con-
tain the corresponding interfaces, and links con-
nect one interface to another. FlowN describes 
physical topology similarly. It maps each  
virtual node to one physical node; each virtual link 
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becomes a path, or a collection of physical links 
and a hop counter giving those links’ ordering.

FlowN stores mapping information in two 
tables. The first stores the node assignments, 
mapping each virtual node to one physical 
node. The second stores the path assignment 
by mapping each virtual link to a set of physi-
cal links, each with a hop count number that 
increases in the path direction.

Mapping between virtual and physical space 
then becomes a simple matter of issuing an SQL 
query. For example, for packets received at the 
controller for software processing, we must 
remove the encapsulation tag and modify the 
identifier for the switch and port on which the 
packet was received. We can realize this with 
the following query:

SELECT L.Tenant_ID, L.node_ID1,  
L.node_port1

   FROM Tenant_Link L, Node_T2P_Mapping M
   WHERE VLAN_tag = x AND  

M.physical_node_ID = y
         AND M.tenant_ID = L.tenant_ID
         AND L.node_ID1 = M.tenant_node_ID

Other events are handled similarly, includ-
ing lookups that yield multiple results — for 
instance, when a physical switch fails, and we 
must fail all virtual switches currently mapped 
to that physical switch.

Although using a relational database reduces 
code complexity, the real advantage is that we 
can capitalize on years of research to achieve 
a durable state and highly scalable system. 
Because we expect many more reads than writes 
in this database, we can run a master database 
server that handles any writes (for topology 
changes and adding new virtual networks, for 
example). FlowN then uses multiple slave serv-
ers to replicate the state across multiple servers. 
Because the mappings don’t change often, the 
system can then use caching to optimize for 
mappings that frequently occur.

With a replicated database, we can partition 
the FlowN virtualization layer across multiple 
physical servers, colocated with each replica of 
the database. Each physical server interfaces 
with a subset of the physical switches and per-
forms the necessary physical-to-virtual map-
pings. These servers also run the controller 
application for a subset of tenants and perform 
the associated virtual-to-physical mappings.  

In some cases, a tenant’s virtual network might 
span physical switches that different controller 
servers have handled. In this case, FlowN sim-
ply sends a message from one controller server 
(say, responsible for the physical switch) to 
another (running the tenant’s controller appli-
cation) over a TCP connection. More efficient 
algorithms for assigning tenants and switches 
to servers are an interesting area for future 
research.

Evaluation
FlowN is a scalable and efficient SDN virtualiza-
tion system. Here, we compare our FlowN proto-
type with unvirtualized NOX — to determine the 
virtualization layer overhead — and FlowVisor —  
to evaluate scalability and efficiency.

We built a FlowN prototype by extending the 
Python NOX version 1.0 OpenFlow controller.3 
This controller runs without any applications 
initially, instead providing an interface to add 
applications (that is, for each tenant) at runtime. 
Our algorithm for embedding new virtual net-
works is based on related work.6 The embedder 
populates a MySQL version 14.14 database with 
mappings between virtual and physical spaces. 
We implement all schemes using the InnoDB 
engine. For encapsulation, we use the VLAN 
header, pushing a new header at the ingress of 
the physical network, swapping labels as neces-
sary in the core, and popping the header at the 
egress. Alongside each database replica, we run 
a memcached instance that gets populated with 
the database lookup results and provides faster 
access times should a lookup be repeated.

We run our prototype on a virtual machine 
running Ubuntu 10.04 LTS, given full resources 
from three processors of a i5-2500 CPU at 3.30 GHz,  
2 Gbytes of memory, and an SSD drive (Crucial 
m4 SSD 64 Gbyte). We perform tests by simu-
lating OpenFlow network operation on another 
virtual machine (running on an isolated pro-
cessor with its own memory space) using a 
modified cbench9 to generate packets with the 
correct encapsulation tags.

We then measure latency by measuring the 
time between when cbench generates a packet-
in event and when it receives a response. The 
virtual network controllers for each network are 
simple learning switches that operate on indi-
vidual switches. In our setup, each new packet-in  
event triggers a rule installation, which the 
cbench application receives.
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Although directly comparing FlowN and 
FlowVisor is difficult because they’re perform-
ing different functionality (see Figure 2), FlowN 
has a much slower increase in latency than 
FlowVisor as more virtual networks are added. 
FlowVisor has lower latency for small numbers 
of virtual networks as the overhead of using a  

database, as compared to a custom data struc-
ture, dominates at these small scales. However, at  
larger sizes (roughly 100 vir tual networks 
and greater), the scalability of the database 
approach that FlowN uses wins out. The over-
all increase in latency over the unvirtualized 
case is less than 0.2 ms for the prototype that 
uses memcached and 0.3 ms for the one that  
doesn’t.

A s we move toward virtualized and, in many 
cases, multitenant computing infrastruc-

tures, the network must also be virtualized to 
complement the already virtualized servers. 
SDNs give us the tools to achieve this virtual-
ization, but to date, many have taken a stance 
on what interface, or abstraction, should be 
provided to the network operators. Rather than  
take a stand on what abstraction users of these 
virtualized infrastructures want, we instead 
provide a f lexible system for partitioning 
resources with FlowN (on which support for dif-
ferent abstractions can be built). Importantly, 
the system’s scalability is paramount. With 
FlowN, we capitalize on modern database tech-
nology and use ideas from container-based vir-
tualization to allow the network virtualization 
layer to scale beyond the limits of today’s vir-
tualization technology. In doing so, we move a 
step closer toward cloud computing infrastruc-
tures in which tenants are in greater control 
over their own networks.�

Figure 2. Latency versus virtual network count. As the number of 
virtual networks the virtualization layer must support increases, 
the overhead, as measured by the latency in how long it takes a 
control message to be processed, also increases. As seen here, 
FlowN has a higher overhead due to the database, but scales 
better than FlowVisor.
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Related Work in Network Virtualization

Researchers have proposed network virtualization in various 
contexts. In early work, ATM switches were partitioned into 

“switchlets” to enable the dynamic creation of virtual networks.1 
In industry, router virtualization is already available in commer-
cial routers (www.juniper.net/techpubs/software/erx/junose80/
swconfig-system-basics/html/virtual-router-config.html). This lets 
multiple service providers share the same physical infrastructure, 
as with the Virtual Network Infrastructure (VINI),2 or as a means 
for a single provider to simplify management of a single physical 
infrastructure among many services, as with ShadowNet.3

More recently, researchers have introduced network virtu-
alization solutions in the context of software-defined networks 
(SDNs) to complement the virtualized computing infrastruc-
ture in multitenant datacenters (see www.necam.com/PFlow/
doc.cfm?t=PFlowController or http://nicira.com/en/network-
virtualization-platform).4 Although considerable work has 
been done for network virtualization in the SDN environment,  

current solutions differ from the approach we describe in the 
main text in how they split the address space and represent 
virtual topology. With FlowN we fully virtualize the address 
space and the topology, with a scalable and efficient system.
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