
2	 Published by the IEEE Computer Society	 1089-7801/13/$31.00 © 2013 IEEE� IEEE INTERNET COMPUTING

Vi
rt

ua
liz

at
io

n

H osted cloud computing has sig-
nif icantly lowered the barrier
for creating new networked ser-

vices. Likewise, experimental facili-
ties such as the Global Environment
for Network Innovations (GENI; www.
geni.net) let researchers perform large-
scale experiments on a “slice” of shared
infrastructure. By letting tenants share
physical resources, virtualization is
a key technology in these infrastruc-
tures. Although virtual machines are
now the standard abstraction for shar-
ing computing resources, the right
abstraction for networks is a subject of
ongoing debate.

Existing solutions differ in the level
of detail they expose to individual ten-
ants. Amazon Elastic Compute Cloud

(EC2) offers a simple abstraction in
which all of a tenant’s virtual machines
can reach each other. Nicira extends
this “one big switch” model by offering
programmatic control at the network
edge to enable, for example, improved
access control (see http://nicira.com/
en/network-virtualization-platform).
Oktopus exposes a network topology so
tenants can perform customized rout-
ing and access control based on knowl-
edge about their own applications and
traffic patterns.1

Each abstraction is most appropri-
ate for a different class of tenants. As
more companies move to the cloud,
providers must go beyond network
bandwidth sharing to support a wider
range of abstractions. With a flexible

Network virtualization gives each “tenant” in a data center its own network

topology and control over its traffic flow. Software-defined networking offers

a standard interface between controller applications and switch-forwarding

tables, and is thus a natural platform for network virtualization. Yet, supporting

numerous tenants with different topologies and controller applications raises

scalability challenges. The FlowN architecture gives each tenant the illusion

of its own address space, topology, and controller, and leverages database

technology to efficiently store and manipulate mappings between virtual

networks and physical switches.

Dmitry Drutskoy
Princeton University

Eric Keller
University of Colorado

Jennifer Rexford
Princeton University

Scalable Network
Virtualization in Software-
Defined Networks

FPO

IC-17-02-Kell.indd 2 1/7/13 4:51 PM

Scalable Network Virtualization in Software-Defined Networks

March/April 2013� 3

network virtualization layer, a cloud provider
can support multiple abstractions ranging from
a simple “one big switch” abstraction (in which
tenants don’t need to configure anything) to
arbitrary topologies (in which tenants run their
own control logic). The key to supporting vari-
ous abstractions is a flexible virtualization layer
that supports arbitrary topologies, address and
resource isolation, and custom control logic.

Supporting numerous tenants with differ-
ent abstractions raises scalability challenges.
For example, supporting virtual topologies
requires that tenants be able to run their own
control logic and learn about relevant topology
changes. Software-defined networking (SDN) is
an appealing platform for network virtualiza-
tion because each tenant’s control logic can run
on a controller rather than on physical switches.
In particular, OpenFlow offers a standard API
for installing packet-forwarding rules, querying
traffic statistics, and learning about topology
changes.2 Supporting multiple virtual networks
with different topologies requires a way to map
a rule or query issued on a virtual network to
the corresponding physical switches, and to map
a physical event (such as a link or switch failure)
to the affected virtual components. Any virtu-
alization solution must perform these mapping
operations quickly, to give each tenant real-time
control over its virtual network.

Here, we present FlowN, an efficient and
scalable virtualization solution. FlowN is built
on top of SDN technology to provide program-
mable control over a network of switches.
Tenants can specify their own address space,
topology, and control logic. The FlowN archi-
tecture leverages advances in database tech-
nology to scalably map between the virtual
and physical networks. Similarly, FlowN uses
a shared controller platform, analogous to
container-based virtualization, to efficiently
run tenants’ controller applications. Experiments
with our prototype FlowN system, built as an
extension to the NOX3 OpenFlow controller,
show that these two design decisions lead to a
fast, flexible, and scalable solution for network
virtualization.

Network Virtualization
For hosted and shared infrastructures, as with
cloud computing, providers should fully vir-
tualize an SDN to represent the network to
tenants. We next look at the requirements for

virtualization in terms of specifying and isolat-
ing virtual infrastructures.

SDN Controller Application
To support the widest variety of tenants, a cloud
provider should let each one specify custom
control logic on its own network topology. SDN
is quickly gaining traction as a way to program
the network. In SDN, a logically centralized
controller manages the collection of switches
through a standard interface, letting the soft-
ware control switches from different vendors.
With the OpenFlow standard,2 for example,
the controller’s interface to a hardware switch
is effectively a flow table with a prioritized
list of rules. Each rule encompasses a pattern
that matches bits of the incoming packets, and
actions that specify how to handle these pack-
ets. These actions include forwarding out of a
specific port, dropping the packet, or sending
the packet to the controller for further process-
ing. The software controller interacts with the
switches (for instance, handling packets sent to
the controller) and installs the flow-table entries
(for example, installing rules in a series of
switches to establish a path between two hosts).

With FlowN, each tenant can run its own
controller application. Of course, not all tenants
need this much control. Tenants wanting a sim-
pler network representation can simply choose
from default controller applications, such as
all-to-all connectivity (similar to what Amazon
EC2 offers) or an interface similar to a router (as
with RouteFlow4). This default controller appli-
cation would run on top of the virtualization
layer that FlowN provides. As such, tenants can
decide whether they want full network control
or a preexisting abstraction that matches their
needs.

Virtual Network Topology
In addition to running a controller application,
tenants also specify a network topology. This
lets each tenant design a network for its own
needs, such as favoring low latency for high-
performance computing workloads or a high
bisection bandwidth for data processing work-
loads.5 With FlowN, each virtual topology con-
sists of nodes, interfaces, and links. Virtual
nodes can be either a server (virtual machine)
or an SDN-based switch. Each node has a set
of virtual interfaces that connect to other vir-
tual interfaces via virtual links. Each virtual

IC-17-02-Kell.indd 3 1/7/13 4:51 PM

Virtualization

4	 www.computer.org/internet/� IEEE INTERNET COMPUTING

component can include resource constraints —
for example, the maximum number of flow-table
entries on the switch, the number of cores on a
server, or the bandwidth and maximum latency
for virtual links. The cloud provider runs an
embedding algorithm6 to map the requested vir-
tual resources to the available physical ones.

Importantly, with full virtualization, vir-
tual topologies are decoupled from the physical
infrastructure. This is in contrast to “slicing”
the physical resources (as occurs with Flow
Visor7), which lets tenants run their own con-
troller over a portion of the traffic and a subset
of the physical network. However, with slicing,
the mapping between virtual and physical topol-
ogies is visible to the tenants. With FlowN, map-
pings aren’t exposed; instead, tenants simply see
their virtual networks. With this decoupling,
cloud providers can offer virtual topologies with
richer connectivity than the physical network,
or remap virtual networks to hide the effects of
failures or planned maintenance. Virtual nodes,
whether switches or virtual machines, can move
to different physical nodes without changing
the tenant’s network view.

Address Space and Bandwidth Isolation
Each tenant has an address space, defined by
fields in the packet headers (source and destina-
tion IP address, TCP port numbers, and so on).

Rather than divide the available address space
among tenants, FlowN present virtual address
spaces to each application. This gives each ten-
ant control over all fields within the header (for
instance, two tenants can use the same private
IP addresses). To do this, the FlowN virtualiza-
tion layer maps between the virtual and physi-
cal addresses. To distinguish between the traffic
and rules for different tenants, the edge switches
encapsulate incoming packets with a protocol-
agnostic extra header, transparent to the ten-
ant’s virtual machines and controller applica-
tion. This extra header (for example, a virtual
LAN, or VLAN) simply identifies the tenant —
we don’t run the associated protocol logic (for
example, per the VLAN spanning-tree protocol).

In addition to address-space isolation, the vir-
tualization solution must support bandwidth iso-
lation. Although current SDN hardware doesn’t
let network controllers limit bandwidth usage,
the recent OpenFlow specification includes this
capability.8 Using embedding algorithms, we
guarantee bandwidth to each virtual link. As
support for enforcing these allocations becomes
available, we can incorporate them into FlowN.

FlowN Architecture Overview
Hosted cloud infrastructures are typically large
datacenters that have many tenants. As such,
our virtualization solution must scale in both
the physical network’s size and the number of
virtual networks. Being scalable and efficient is
especially critical in SDNs, where packets are
not only handled in the hardware switches, but
can also be sent to the centralized controller for
processing.

Virtualization has two main performance
issues in an SDN context. First, an SDN con-
troller must interact with switches through a
reliable communication channel (such as SSL
over TCP) and maintain a current view of the
physical infrastructure (for example, which
switches are alive). This incurs both mem-
ory and processing overhead, and introduces
latency. Second, with virtualization, any inter-
action between a tenant’s controller application
and the physical switches must go through a
mapping between the virtual and physical net-
works. As the number of virtual and physical
switches increases, performing this mapping
becomes a limiting factor in scalability.

To overcome these issues, the FlowN archi-
tecture (see Figure 1) is based around two key

Figure 1. System design. The FlowN architecture lets tenants write
arbitrary controller software to fully control their own address
space, defined by the fields in the packet header, and uses modern
database technology to perform the mapping between the virtual
and physical address space.

Tenant 2
application

Arbitrary
embedder

SDN-enabled
network

Address
mappingDB

Container-based
application virtualization

Cache

Tenant 1
application

IC-17-02-Kell.indd 4 1/7/13 4:51 PM

Scalable Network Virtualization in Software-Defined Networks

March/April 2013� 5

design decisions. First, FlowN lets tenants write
arbitrary controller software that has full con-
trol over the address space and can target an
arbitrary virtual topology. However, we use a
shared controller platform (such as NOX3) rather
than running a separate controller for each ten-
ant. This approach is analogous to container-
based virtualization such as LXC for Linux
(http://lxc.sourceforge.net) or FreeBSD Jails
(www.freebsd.org/doc/en_US.ISO8859-1/books/
handbook/jails.html). Second, we use modern
database technology to perform the mapping
between the virtual and physical address space.
This provides a scalable solution that’s easily
extensible as new functionality is needed.

Container-Based Virtualization
Each tenant has a controller application that
runs on top of its virtual topology. This appli-
cation consists of handlers that respond to net-
work events (such as topology changes, packet
arrivals, and new traffic statistics) by sending
new commands to the underlying switches. Each
application should have the illusion //that it?//
runs on its own controller. However, running a
full-fledged controller for each tenant is unnec-
essarily expensive. Instead, FlowN supports
container-based virtualization by mapping API
calls in the NOX controller back and for th
between the physical and virtual networks.

Full Controller Virtualization Overhead
Running a separate controller for each tenant
seems like a natural way to support network
vir tualization. In this solution, the vir tu-
alization system exchanges OpenFlow mes-
sages directly with the underlying switches,
and with each tenant’s controller. This system
maintains the relationships between physical
and virtual components, and whatever encap-
sulation is applied to each tenant’s traff ic.
When physical events happen in the network
(for example, a virtual link or switch failure,
or a packet-in event for a particular virtual
network), the system translates them to one
or more virtual events and sends the corre-
sponding OpenFlow message to the appropriate
tenants. Similarly, when a tenant’s controller
sends an OpenFlow message, the virtualization
system converts the message (for example, by
mapping virtual switch identifiers to physical
switch identifiers, including the tenant-specific
encapsulation header in the packet-handling

rules) before sending a message to the physical
switch.

The FlowVisor system follows this approach,7
virtualizing the switch data plane by mapping
OpenFlow messages sent between the switches
and the per-tenant controllers. Using the Open-
Flow standard as the interface to the virtualiza-
tion system has some advantages (tenants can
select any controller platform, for instance), but
introduces unnecessary overhead. Repeatedly
marshalling and unmarshalling parameters in
OpenFlow messages incurs extra latency. Run-
ning a complete controller instance for each
tenant involves running a large code base,
which consumes extra memory. Periodically
checking for the separate controllers’ “liveness”
incurs additional overhead. The overhead for
supporting a single tenant might not be that
significant. However, when we consider that
the virtualization layer will now have to pro-
vide the full interface of switches for each vir-
tual switch (which will outnumber the physical
switches by at least an order of magnitude), the
cumulative overhead is significant — requiring
more computing resources and incurring extra,
unnecessary latency.

Container-Based Controller Virtualization
Instead, we adopt a solution inspired by container-
based virtualization, in which a shared kernel
runs multiple user-space containers with inde-
pendent name spaces and resource scheduling.
FlowN is a modified NOX controller that can
run multiple applications, each with its own
address space, virtual topology, and event handlers.
Rather than map OpenFlow protocol messages,
FlowN maps between NOX API calls. In essence,
FlowN is a special NOX application that runs its
own event handlers that call tenant-specific event
handlers. For example, when a packet arrives at the
controller, FlowN runs its packet-in event handler,
identifying the appropriate tenant (based on the
VLAN tag on the packet, for example) and invok-
ing that tenant’s own packet-in handler. Similarly,
if a physical port fails, FlowN’s port-status event
handler identifies the virtual links traversing the
failed physical port, and invokes the port-status
event handler for each affected tenant with the ID
of its failed virtual port.

Simi larly, when a tenant’s event han-
dler invokes an API call, FlowN intercepts
the call and translates between the virtual and
physical components. Suppose a tenant calls a

IC-17-02-Kell.indd 5 1/7/13 4:51 PM

Virtualization

6	 www.computer.org/internet/� IEEE INTERNET COMPUTING

function that installs a packet-handling rule in a
switch. FlowN maps the virtual switch ID to the
corresponding physical switch’s identifier, checks
that the tenant hasn’t exceeded its allotted space
for rules on that switch, and modifies the pattern
and actions in the rule. When modifying a rule,
FlowN changes the pattern to include the tenant-
specific VLAN tag, and the actions to forward on
to the physical ports associated with the tenant’s
virtual ports. Next, FlowN invokes the underly-
ing NOX function to install the modified rule in
the associated physical switch. FlowN follows a
similar approach to intercept other API calls for
removing rules, querying traffic statistics, send-
ing packets, and so on.

Each tenant’s event handlers run within its
own thread. Although we haven’t incorporated
any strict resource limits, CPU scheduling pro-
vides fairness among the threads. Furthermore,
running a separate thread per tenant protects
against a tenant’s controller application not
returning (for example, having an infinite loop)
and preventing other controller applications
from running.

Database-Driven Mappings
Container-based controller virtualization reduces
the overhead of running multiple controller
applications. However, any interaction between
a virtual topology and the physical network
still requires a mapping between virtual and
physical spaces. This can easily become a bot-
tleneck, which FlowN overcomes by leveraging
advances in database technology.

Virtual Network Mapping Overhead
To provide each tenant with its own address space
and topology, FlowN maps between virtual and
physical resources. It encapsulates tenants’
packets with a unique header field (for example,
a VLAN tag) as they enter the network. To sup-
port numerous tenants, the switches swap the
labels at each hop in the network. This lets a
switch classify packets based on the physical
interface port, the label in the encapsulation
header, and the fields the tenant application has
specified. Each switch can thus uniquely deter-
mine which actions to perform.

The virtualization software running on the
controller determines these labels. A virtual-
to-physical mapping occurs when an applica-
tion modifies the f low table (adds a new f low
rule, for example). The virtualization layer must

alter the rules to uniquely identify the virtual
link or switch. A physical-to-virtual mapping
occurs when the physical switch sends a mes-
sage to the controller (as when a packet doesn’t
match any flow-table rule). The virtualization
layer must de-multiplex the packet to the right
tenant, and identify the right virtual port and
virtual switch.

These mappings can occur either one-to-
one, as when installing a new rule or handling a
packet sent to the controller, or one-to-many, as
with link failures that affect multiple tenants.
In general, these mappings are based on various
combinations of input and output parameters.
Using a custom data structure with custom code
to perform these mappings can easily become
unwieldy, leading to software that’s difficult to
maintain and extend.

More importantly, this custom software
would need to scale across multiple physical con-
trollers. Depending on the mappings’ complex-
ity, a single controller machine eventually hits a
limit on how many mappings it can perform per
second. To scale further, the controller can run
on multiple physical servers. With custom code
and in-memory data structures, distributing the
state and logic in a consistent fashion becomes
extremely difficult.

FlowVisor takes this custom data-structure
approach.7 Although FlowVisor doesn’t provide
full virtualization — it instead slices the net-
work resources — it must still map an incom-
ing packet to the appropriate slice. In some
cases, hashing can help perform a fast lookup,
but this isn’t always possible. For example, for
the one-to-many physical to virtual mappings,
FlowVisor iterates over all tenants, and for each
tenant, it performs a lookup with the physical
identifier.

Topology Mapping with a Database
Rather than using an in-memory data structure
with custom mapping code, FlowN uses modern
database technology. Both the topology descrip-
tions and the assignment to physical resources
lend themselves directly to a database-style
relational model. Each vir tual topology is
uniquely identified by some key, and consists of
several nodes, interfaces, and links. Nodes con-
tain the corresponding interfaces, and links con-
nect one interface to another. FlowN describes
physical topology similarly. It maps each
virtual node to one physical node; each virtual link

IC-17-02-Kell.indd 6 1/7/13 4:51 PM

Scalable Network Virtualization in Software-Defined Networks

March/April 2013� 7

becomes a path, or a collection of physical links
and a hop counter giving those links’ ordering.

FlowN stores mapping information in two
tables. The first stores the node assignments,
mapping each virtual node to one physical
node. The second stores the path assignment
by mapping each virtual link to a set of physi-
cal links, each with a hop count number that
increases in the path direction.

Mapping between virtual and physical space
then becomes a simple matter of issuing an SQL
query. For example, for packets received at the
controller for software processing, we must
remove the encapsulation tag and modify the
identifier for the switch and port on which the
packet was received. We can realize this with
the following query:

SELECT L.Tenant_ID, L.node_ID1,
L.node_port1

 FROM Tenant_Link L, Node_T2P_Mapping M
 WHERE VLAN_tag = x AND

M.physical_node_ID = y
 AND M.tenant_ID = L.tenant_ID
 AND L.node_ID1 = M.tenant_node_ID

Other events are handled similarly, includ-
ing lookups that yield multiple results — for
instance, when a physical switch fails, and we
must fail all virtual switches currently mapped
to that physical switch.

Although using a relational database reduces
code complexity, the real advantage is that we
can capitalize on years of research to achieve
a durable state and highly scalable system.
Because we expect many more reads than writes
in this database, we can run a master database
server that handles any writes (for topology
changes and adding new virtual networks, for
example). FlowN then uses multiple slave serv-
ers to replicate the state across multiple servers.
Because the mappings don’t change often, the
system can then use caching to optimize for
mappings that frequently occur.

With a replicated database, we can partition
the FlowN virtualization layer across multiple
physical servers, colocated with each replica of
the database. Each physical server interfaces
with a subset of the physical switches and per-
forms the necessary physical-to-virtual map-
pings. These servers also run the controller
application for a subset of tenants and perform
the associated virtual-to-physical mappings.

In some cases, a tenant’s virtual network might
span physical switches that different controller
servers have handled. In this case, FlowN sim-
ply sends a message from one controller server
(say, responsible for the physical switch) to
another (running the tenant’s controller appli-
cation) over a TCP connection. More efficient
algorithms for assigning tenants and switches
to servers are an interesting area for future
research.

Evaluation
FlowN is a scalable and efficient SDN virtualiza-
tion system. Here, we compare our FlowN proto-
type with unvirtualized NOX — to determine the
virtualization layer overhead — and FlowVisor —
to evaluate scalability and efficiency.

We built a FlowN prototype by extending the
Python NOX version 1.0 OpenFlow controller.3
This controller runs without any applications
initially, instead providing an interface to add
applications (that is, for each tenant) at runtime.
Our algorithm for embedding new virtual net-
works is based on related work.6 The embedder
populates a MySQL version 14.14 database with
mappings between virtual and physical spaces.
We implement all schemes using the InnoDB
engine. For encapsulation, we use the VLAN
header, pushing a new header at the ingress of
the physical network, swapping labels as neces-
sary in the core, and popping the header at the
egress. Alongside each database replica, we run
a memcached instance that gets populated with
the database lookup results and provides faster
access times should a lookup be repeated.

We run our prototype on a virtual machine
running Ubuntu 10.04 LTS, given full resources
from three processors of a i5-2500 CPU at 3.30 GHz,
2 Gbytes of memory, and an SSD drive (Crucial
m4 SSD 64 Gbyte). We perform tests by simu-
lating OpenFlow network operation on another
virtual machine (running on an isolated pro-
cessor with its own memory space) using a
modified cbench9 to generate packets with the
correct encapsulation tags.

We then measure latency by measuring the
time between when cbench generates a packet-
in event and when it receives a response. The
virtual network controllers for each network are
simple learning switches that operate on indi-
vidual switches. In our setup, each new packet-in
event triggers a rule installation, which the
cbench application receives.

IC-17-02-Kell.indd 7 1/7/13 4:51 PM

Virtualization

8	 www.computer.org/internet/� IEEE INTERNET COMPUTING

Although directly comparing FlowN and
FlowVisor is difficult because they’re perform-
ing different functionality (see Figure 2), FlowN
has a much slower increase in latency than
FlowVisor as more virtual networks are added.
FlowVisor has lower latency for small numbers
of virtual networks as the overhead of using a

database, as compared to a custom data struc-
ture, dominates at these small scales. However, at
larger sizes (roughly 100 vir tual networks
and greater), the scalability of the database
approach that FlowN uses wins out. The over-
all increase in latency over the unvirtualized
case is less than 0.2 ms for the prototype that
uses memcached and 0.3 ms for the one that
doesn’t.

A s we move toward virtualized and, in many
cases, multitenant computing infrastruc-

tures, the network must also be virtualized to
complement the already virtualized servers.
SDNs give us the tools to achieve this virtual-
ization, but to date, many have taken a stance
on what interface, or abstraction, should be
provided to the network operators. Rather than
take a stand on what abstraction users of these
virtualized infrastructures want, we instead
provide a f lexible system for partitioning
resources with FlowN (on which support for dif-
ferent abstractions can be built). Importantly,
the system’s scalability is paramount. With
FlowN, we capitalize on modern database tech-
nology and use ideas from container-based vir-
tualization to allow the network virtualization
layer to scale beyond the limits of today’s vir-
tualization technology. In doing so, we move a
step closer toward cloud computing infrastruc-
tures in which tenants are in greater control
over their own networks.�

Figure 2. Latency versus virtual network count. As the number of
virtual networks the virtualization layer must support increases,
the overhead, as measured by the latency in how long it takes a
control message to be processed, also increases. As seen here,
FlowN has a higher overhead due to the database, but scales
better than FlowVisor.

0 4020 60 80 100
Number of virtual networks

La
te

nc
y

(m
s)

0.50

0.80

FlowN with memcached
FlowN without memcached
FlowVisor
Unvirtualized

0.55

0.60

0.65

0.70

0.75

Related Work in Network Virtualization

Researchers have proposed network virtualization in various
contexts. In early work, ATM switches were partitioned into

“switchlets” to enable the dynamic creation of virtual networks.1
In industry, router virtualization is already available in commer-
cial routers (www.juniper.net/techpubs/software/erx/junose80/
swconfig-system-basics/html/virtual-router-config.html). This lets
multiple service providers share the same physical infrastructure,
as with the Virtual Network Infrastructure (VINI),2 or as a means
for a single provider to simplify management of a single physical
infrastructure among many services, as with ShadowNet.3

More recently, researchers have introduced network virtu-
alization solutions in the context of software-defined networks
(SDNs) to complement the virtualized computing infrastruc-
ture in multitenant datacenters (see www.necam.com/PFlow/
doc.cfm?t=PFlowController or http://nicira.com/en/network-
virtualization-platform).4 Although considerable work has
been done for network virtualization in the SDN environment,

current solutions differ from the approach we describe in the
main text in how they split the address space and represent
virtual topology. With FlowN we fully virtualize the address
space and the topology, with a scalable and efficient system.

References
1.	 J. van der Merwe and I. Leslie, “Switchlets and Dynamic Virtual ATM Net-

works,” Proc. IFIP/IEEE Int’l Symp. Integrated Network Management, IEEE,

1997, pp. 355–378.

2.	 A. Bavier et al., “In VINI Veritas: Realistic and Controlled Network Experi-

mentation,” Proc. ACM SIGCOMM 2006 Conf., ACM, 2006, pp. 3–14.

3.	 X. Chen, Z.M. Mao, and J. van der Merwe, “ShadowNet: A Platform for

Rapid and Safe Network Evolution,” Proc. Usenix Ann. Technical Conf., Usenix

Assoc., 2009, pp. 29–42.

4.	 R. Sherwood et al., “Can the Production Network Be the Testbed?” Proc.

9th Conf. Operating Systems Design and Implementation, Usenix Assoc., 2010,

article no. 1–6.

IC-17-02-Kell.indd 8 1/7/13 4:51 PM

Scalable Network Virtualization in Software-Defined Networks

March/April 2013� 9

References
1.	 C. Wilson et al., “Better Never than Late: Meet-

ing Deadlines in Datacenter Networks,” Proc. ACM

SIGCOMM 2011 Conf., ACM, 2011, pp. 50–61.

2.	 N. McKeown et al., “OpenFlow: Enabling Innovation in

Campus Networks,” ACM SIGCOMM Computer Comm.

Rev., vol. 38, no. 2, 2008, pp. 69–74.

3.	 N. Gude et al., “NOX: Towards an Operating System for

Networks,” ACM SIGCOMM Computer Communication

Rev., vol. 38, no. 3, 2008, pp. 105–110.

4.	 M.R. Nascimento et al., “Virtual Routers as a Service:

The RouteFlow Approach Leveraging Software-Defined

Networks,” Proc. Conf. Future Internet Technologies

(CFI), ACM, 2011, pp. 34–37.

5.	 K. Webb, A. Snoeren, and K. Yocum, “Topology Switch-

ing for Data Center Networks,” Proc 11th Usenix Conf. Hot

Topics in Management of Internet, Cloud, and Enterprise

Networks and Services (Hot-ICE), Usenix Assoc., 2011.

6.	 N. Chowdhury, M. Rahman, and R. Boutaba, “Virtual

Network Embedding with Coordinated Node and Link

Mapping,” Proc. 28th IEEE Conf. Computer Communi-

cations (INFOCOM 09), IEEE, 2009, pp. 783–791.

7.	 R. Sherwood et al., “Can the Production Network Be the

Testbed?” Operating Systems Design and Implementa-

tion, Oct. 2010, pp. 365–378.

8.	 Openflow Switch Specification 1.3.0., Open Networking

Foundation, Apr. 2012; www.opennetworking.org/

images/stor ies/downloads/specif ication/openf low-

spec-v1.3.0.pdf.

9.	 Openflow Operations Per Second Controller Benchmark,

OpenFlow specification, Mar. 2011; www.openflow.org/

wk/index.php/Oflops.

Dmitry Drutskoy is a computer scientist at Elysium Digital,

an IP litigation consulting and digital forensics com-

pany in Boston. His research interests are in computer

networks, databases, and 3D graphics. Drutskoy has an

MSE in computer science from Princeton University.

Contact him at drutskoy@cs.princeton.edu.

Eric Keller is an assistant professor at the University of

Colorado. His overall research aim is to create a secure

and reliable end-to-end infrastructure for dependable

networked services, using a cross-layer approach from

networking, computer architecture, operating systems,

and distributed systems. Keller has a PhD in electrical

engineering from Princeton University. Contact him at

eric.keller@colorado.edu.

Jennifer Rexford is a professor in the computer science

department at Princeton University. Her research interests

include Internet routing, network measurement, and

network management, with the larger goal of mak-

ing data networks easier to design, understand, and

manage. Rexford has a PhD in computer science and

electrical engineering from the University of Michi-

gan. She’s the coauthor of Web Protocols and Prac-

tice (Addison-Wesley, 2001), and a member of IEEE.

Contact her at jrex@cs.princeton.edu.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

IC-17-02-Kell.indd 9 1/7/13 4:51 PM

