
Eliminating the Hypervisor Attack Surface
for a More Secure Cloud

Jakub Szefer, Eric Keller, Ruby B. Lee and Jennifer Rexford
Princeton University

{szefer, ekeller, rblee, jrex}@princeton.edu

ABSTRACT
Cloud computing is quickly becoming the platform of choice
for many web services. Virtualization is the key underly-
ing technology enabling cloud providers to host services for
a large number of customers. Unfortunately, virtualization
software is large, complex, and has a considerable attack
surface. As such, it is prone to bugs and vulnerabilities
that a malicious virtual machine (VM) can exploit to attack
or obstruct other VMs — a major concern for organizations
wishing to move“to the cloud.” In contrast to previous work
on hardening or minimizing the virtualization software, we
eliminate the hypervisor attack surface by enabling the guest
VMs to run natively on the underlying hardware while main-
taining the ability to run multiple VMs concurrently. Our
NoHype system embodies four key ideas: (i) pre-allocation
of processor cores and memory resources, (ii) use of virtual-
ized I/O devices, (iii) minor modifications to the guest OS to
perform all system discovery during bootup, and (iv) avoid-
ing indirection by bringing the guest virtual machine in more
direct contact with the underlying hardware. Hence, no hy-
pervisor is needed to allocate resources dynamically, emulate
I/O devices, support system discovery after bootup, or map
interrupts and other identifiers. NoHype capitalizes on the
unique use model in cloud computing, where customers spec-
ify resource requirements ahead of time and providers offer
a suite of guest OS kernels. Our system supports multiple
tenants and capabilities commonly found in hosted cloud in-
frastructures. Our prototype utilizes Xen 4.0 to prepare the
environment for guest VMs, and a slightly modified version
of Linux 2.6 for the guest OS. Our evaluation with both
SPEC and Apache benchmarks shows a roughly 1% perfor-
mance gain when running applications on NoHype compared
to running them on top of Xen 4.0. Our security analysis
shows that, while there are some minor limitations with cur-
rent commodity hardware, NoHype is a significant advance
in the security of cloud computing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

Categories and Subject Descriptors
C.0 [General]: System Architectures; D.4.6 [Software En-

gineering]: Operating Systems—Security and Protection

General Terms
Security

Keywords
Secure Cloud Computing, Hypervisor Security, Attack Vec-
tors, Virtualization, Multicore, Hardware Security

1. INTRODUCTION
Cloud computing is transforming the way people use com-

puters. Cloud computing is also transforming how networked
services are run. The provider of a service (the cloud cus-
tomer) is able to dynamically provision infrastructure to
meet the current demand by leasing resources from a hosting
company (the cloud infrastructure provider). The cloud in-
frastructure provider can leverage economies of scale to pro-
vide dynamic, on-demand infrastructure at a favorable cost.
The provider does this by utilizing virtualization where vir-
tual machines from multiple customers share the same phys-
ical server. This multi-tenancy, where mutually distrusting
customers lease resources from the same provider, under-
scores the need for a secure virtualization solution.

Because of its central role, the virtualization software is
a prime target for attacks. Unfortunately, the virtualiza-
tion layer is quite complex and forms a very large trusted
computing base (e.g. Xen has ∼200K lines of code in the
hypervisor itself ∼600K in the emulator, and over 1M in the
host OS). The large code base is not suitable for formal ver-
ification – the best formal verification techniques available
today are only able to handle around 10K lines of code [18].
Further, bug reports such as those listed in NIST’s National
Vulnerability Database [6] show the difficulty of shipping
bug-free hypervisor code. A malicious VM can exploit these
bugs to attack the virtualization software. Exploiting such
an attack vector would give the attacker the ability to ob-
struct or access other virtual machines and therefore breach
confidentiality, integrity, and availability of the other virtual
machines’ code or data.

Such vulnerabilities make many companies hesitant about
moving to the cloud [14]. If not for the security threat of
attacks on a vulnerable virtualization layer, computing in
the cloud has the potential to be more secure than in pri-
vate facilities. This is due to the very nature of the large
and critical data centers run by the cloud infrastructure



providers. The level of physical security (cameras, person-
nel, etc.) found in these data centers is often cost prohibitive
for individual customers.

Previous approaches to securing the virtualization soft-
ware have limitations when applied to cloud computing. Ap-
proaches that minimize the hypervisor, e.g., [32], are not
suitable for cloud computing infrastructures because they
greatly reduce functionality. Approaches that introduce a
new processor architecture, e.g., [10], cannot be deployed
today. Approaches that add extra software to verify the
integrity of the hypervisor, e.g., [9], add overhead, leave a
small window open between the attack and the reactive de-
fense, and do not protect against attacks that exploit bugs
in the hypervisor for purposes other than injecting code or
modifying the control flow (e.g., bugs which cause the hy-
pervisor to crash).

In this paper we present our NoHype system that takes
the novel approach of eliminating the hypervisor attack sur-
face altogether. We remove the need for virtual machines to
constantly interact with the hypervisor during their lifetime
(e.g., by short-circuiting the system discovery and avoiding
indirection). With NoHype, we (i) retain the ability to run
and manage virtual machines in the same manner as is done
today in cloud computing infrastructures, (ii) achieve this
with today’s commodity hardware, and (iii) prevent attacks
from happening in the first place.

We previously proposed the high-level idea of NoHype in
a position paper [16]. The previous work discussed how pre-
allocation and virtualized I/O devices could be used to re-
move the hypervisor and motivated why this idea works in
the setting of hosted cloud infrastructures. In this paper,
we present the complete design, implementation, and eval-
uation of a working NoHype system on today’s commodity
hardware. This new work adds a significant level of depth
through a complete prototype design and implementation,
as well as new performance and security analysis which iden-
tifies and evaluates potential side-channels. In particular, we
make the following new contributions:

• An architecture which eliminates the hypervi-

sor attack surface. As we previously proposed [16],
the architecture pre-allocates memory and processor
cores (so a hypervisor does not have to do this dy-
namically) and uses only virtualized I/O devices (so a
hypervisor does not have to emulate devices). New to
this paper, the architecture also avoids the indirection
of mapping physical interrupts and identifiers to the
virtual ones (so a hypervisor does not have to be in-
volved in any communication channels). Each of these
is enabled by the unique use case of the cloud comput-
ing model.

• A design which can be realized on today’s com-

modity hardware. We take advantage of modern
hardware features to enforce the resource allocations
as well as the common practice for cloud infrastruc-
ture providers to provide a set of kernel images. With
this, we allow the guest operating systems to boot up
as normal. This process is supported by a temporary
hypervisor, which enables a slightly modified guest op-
erating system to discover the environment at boot up
and save this information about the system for later
use.

• A prototype implementation and system eval-

uation. We built a NoHype prototype using an In-

tel Nehalem quad-core processor. We utilized Xen 4.0
to prepare the environment for the guest virtual ma-
chines, and a slightly modified version of Linux 2.6 for
the guest operating system. Our performance evalu-
ation through the use of SPEC 2006 [15] and Apache
[1] benchmarks show roughly 1% faster run times. We
also present a security analysis which shows that No-
Hype makes an improvement in the security of virtual-
ization technology for hosted and shared cloud infras-
tructures.

The remainder of the paper is organized as follows. In
Section 2 we discuss background information about virtual-
ization. In Section 3 we discuss our threat model. In Section
4 we discuss the NoHype system architecture, while in Sec-
tion 5 we discuss details of our prototype implementation.
The security analysis is presented in Section 6. Finally, re-
lated works are discussed in Section 7 and we conclude in
Section 8 including a discussion about future work where we
discuss live virtual machine migration.

2. VIRTUALIZATION VULNERABILITIES
The purpose of a hypervisor is to present to the guest VM

a view that appears as though the operating system and ap-
plications inside the VM are running directly on some given
hardware. The hypervisor achieves this by emulating the
underlying hardware and arbitrating access to it. Realizing
this functionality requires a large and complex body of soft-
ware. It also requires a significant and frequent interaction
between the guest VMs and the hypervisor. This interac-
tion is the basis of the security threat which a malicious VM
can utilize to attack the hypervisor and exploit bugs in the
hypervisor or supporting virtualization software to attack
another VM.

2.1 Roles of Virtualization Software
Figure 1 shows the hypervisor, host OS, and emulator

(e.g., QEMU) which form the virtualization layer. The dot-
ted line outlines the components which are the trusted com-
puting base in today’s virtualization solutions. Highlighted
in the figure are also the points of interaction and compo-
nents which are involved in these interactions.

Figure 1: Roles of hypervisor.

An important and large part of the virtualization layer,
in addition to the hypervisor, is the host OS ( 1©) and the
emulator ( 2©). The host OS (Dom0 in Xen’s terminology)
has special management privileges and a system administra-
tor uses the host OS to manage VMs on the system, e.g.,
launching and shutting down VMs. This causes the host
OS to interact with the hypervisor via hypercalls ( 3©). The



Figure 2: VM exits in stock Xen 4.0 during server bootup and runtime of a guest VM.

host OS may also include drivers for the physical devices
which are used by the system ( 4©). An emulator which em-
ulates system devices that guest VMs interact with is also
commonly run within the host OS. All together, this func-
tionality requires over a million lines of code.

We now dicuss the roles of the hypervisor in emulating and
managing the main resources in today’s computer systems.

Processor cores: The first responsibility of any virtualiza-
tion solution is the ability to arbitrate access to the processor
cores as well as sometimes emulate their functionality. The
hypervisor needs to cope with the dynamic addition and re-
moval of VMs as they get started and stopped, as well as
the ability to schedule multiple VMs on the same system. In
addition to scheduling the VMs, the virtualization layer also
uses the scheduler to periodically, every clock tick, run some
of its own functionality – for example the hypervisor needs
to check whether to deliver timer interrupts to the VM in
this clock tick. The virtualization layer may also emulate
the underlying processor as the presented processor cores
may differ in capabilities from the actual cores.

Memory: The hypervisor is also in charge of managing the
host physical memory of the system. Each VM is assigned
some guest physical memory that the guest OS can man-
age and assign as virtual memory to the applications. Here,
the virtualization layer can take a number of different ap-
proaches to managing the allocation of host physical memory
among the various VMs. One popular use of virtualization is
server consolidation which relies on the virtualization layer
to dynamically manage the allocation of physical memory
to the different VMs in the system.

I/O devices: Another important functionality of the virtu-
alization layer is dealing with I/O devices such as a network
interface card (NIC). Today’s virtualization solutions com-
monly create virtual devices that they assign to the guest
VMs. The virtualization layer needs to manage these virtual
devices and emulate their behavior. There is also the option
of dedicating physical devices to the VMs. In this situation,
the virtualization layer only needs to assign and reclaim the
devices. It does not need to emulate their behavior. In both
cases, however, the emulator is needed to emulate the PCI
(Peripheral Component Interconnect) bus. The guest OS
interacts with the PCI bus during bootup to discover and
configure the available devices.

Interrupts and Timers: The virtualization layer must also
emulate the interrupt subsystem and timers for the guest
VMs. For interrupts, the main parts of the underlying hard-
ware interrupt subsystem emulated by the hypervisor in-

clude the I/O APIC1 (which routes interrupts from devices
to processor cores) and local APICs (which are attached
to each core as an interface to the interrupt subsystem for
sending and receiving interrupt messages to and form other
local APICs or the I/O APIC). These APICs are emulated
so the guest OS can use them to configure and manage in-
terrupts inside the VM, while physical APICs are controlled
by the hypervisor for the management of the physical plat-
form. For timers, since the hypervisor utilizes the physical
timer devices to get periodic clock ticks itself, it has to em-
ulate the timer device for each guest VM. Today, VMs can
be scheduled on different cores and as such, the interrupts
and timers must first go through the hypervisor which will
deliver the interrupts to the VM by utilizing its knowledge
of the VM’s current location.

2.2 Attack Surface
The virtualization layer is heavily involved throughout the

lifetime of the guest VM. Each interaction between the VM
and the hypervisor is then a potential attack vector that
could be exploited by the guest. The guest OS interacts di-
rectly with the hypervisor ( 5©) and indirectly with the host
OS and the emulator ( 6©) through VM exits (and hyper-
calls if paravirtualization is used). A VM exit is an event
which occurs when the VM’s code is interrupted and the hy-
pervisor code begins to execute to handle some event (e.g.,
emulate memory access, deliver a virtual timer interrupt,
etc.). A hypercall is similar to a system call and is used by
guest VMs to request explicit service from the hypervisor.
Hypercalls are not considered further as we are not using
paravirtualization. VM exits are quite frequent even when
the guest OS inside the VM is not doing any work; in an idle
VM running on top of Xen 4.0, the VM exits occur ∼600
times per second.

On a 64-bit Intel x86 architecture with virtualization ex-
tensions, there are 56 reasons for VM exits, and this forms
the large attack surface which is the basis of the security
threat. The reasons VM for exits are described in Table
1. Each VM exit causes the hypervisor code to run so the
hypervisor can intervene when the guest OS performs some
operation that caused the associated exit. This allows the
hypervisor to maintain the abstraction of the system which
it presents to the guest OSes, for example it can return dif-
ferent CPUID values than the values actually reported by
the hardware.

In order to emphasize how often the large and complex

1APIC is the advanced programmable interrupt controller.



virtualization layer is needed, we examine the execution of
an actual (non-paravirtualized) VM with the Xen hypervi-
sor. Figure 2 shows a timeline of a Linux based VM pinned
to a core and with a directly assigned NIC, booting up and
running some programs on top of the Xen 4.0 hypervisor
with no other VMs present. The most frequent reasons for
exits are highlighted in the figure while others are grouped
in the “other” category. The stacked area graph shows the
number of VM exits during each 250ms interval.

First, the guest OS boots up, which is the first 75 seconds
in the graph. A staggering 9,730,000 exits are performed
as the system is starting up. This is an average of about
130,000 exits per second. The majority of the exits are the
EPTV and EXCNMI VM exits, but exits such as CPUID
are also present. These exits are due to interaction with
hardware that is being emulated (EPTV and EXCNMI) or
are part of system discovery done by the guest OS (CPUID).

Next, at around 90 seconds we show an SSH login event
which causes a spike in VM exits (EXTINT and APICACC).
Even with the directly assigned NIC, the hypervisor is in-
volved in the redirection of the interrupts to the correct core
and the EXTINT exit signals when an interrupt has come.
The APICACC exits are due to the guest interacting with
the local APIC (Advanced Programmable Interrupt Con-
troller) which is used to acknowledge receipt of an interrupt,
for example.

Then, at around 115 seconds we show execution of the
Apache web server with a modest request rate. This causes
many exits: EXTINT, CPUID, CRACC, APICACC. We
found that libc and other libraries make multiple uses of
CPUID each time a process is started and in Apache there
are new processes started to handle each connection.

Finally, at around 180 seconds we show starting VNC (a
graphical desktop sharing software) and running startx to
start the X Window System. We can see the EPTV ex-
its which are due to emulation of VGA once the graphical
window system is started.

To summarize, different situations lead to different uses of
VM exits and invocation of underlying hypervisor support.
Each VM exit could be treated as a communication channel
where a VM implicitly or explicitly sends information to the
hypervisor so the hypervisor can handle the event. Each VM
exit is then a potential attack vector as it is a window that
the VM can use to attack the hypervisor (e.g., by exploiting
a bug in how the hypervisor handles certain events). With
NoHype, we eliminate these attack vectors.

3. THREAT MODEL
With NoHype, we aim to protect against attacks on the

hypervisor by the guest VMs. A malicious VM could cause
a VM exit to occur in such a manner as to inject malicious
code or trigger a bug in the hypervisor. Injecting code or
triggering a bug could potentially be used to violate confi-
dentiality or integrity of other VMs or even crash or slow
down the hypervisor, causing a denial-of-service attack vi-
olating availability. We eliminate the need for interaction
between VMs and hypervisor, thus preventing such attacks.

To that end, we assume the cloud infrastructure provider
is not malicious, and sufficient physical security controls are
being employed to prevent hardware attacks (e.g., probing
on the memory buses of physical servers) through surveil-
lance cameras and restricted access to the physical facilities.
We are not concerned with the security of the guest OSes,

Table 1: Selected reasons for VM exits [3].

VM Exit Reason

EPTV An attempt to access memory with a guest-
physical address was disallowed by the config-
uration of the EPT paging structures.

APICACC Guest software attempted to access memory at
a physical address on the APIC-access page.

MSRWR Guest software attempted to write machine
specific register, MSR.

MSRRD Guest software attempted to read machine
specific register, MSR.

IOINSR Guest software attempted to execute an I/O
instruction.

DRACC Guest software attempted to move data to or
from a debug register

CRACC Guest software attempted to access CR0, CR3,
CR4, or CR8 x86 control registers.

CPUID Guest software attempted to execute CPUID
instruction.

PNDVINT Pending virtual interrupt.

EXTINT An external interrupt arrived.

EXCNMI Exception or non-maskable interrupt, NMI.

but do require that a cloud provider makes available a set of
slightly modified guest OS kernels which are needed to boot
a VM. The responsibility of protecting software which runs
inside the VMs is placed upon the customer. Also, in this
work the security and correctness of the cloud management
software is not covered. The cloud management software
presents the interface that cloud customers use to request,
manage and terminate virtual machines. It runs on dedi-
cated servers and interacts with the NoHype servers. For
the purpose of this paper, we assume it is secure, but will
revisit this as potential future work.

4. NOHYPE SYSTEM ARCHITECTURE
In this section we present the NoHype system architec-

ture which capitalizes on the unique use model of hosted
and shared cloud infrastructures in order to eliminate the
hypervisor attack surface. Rather than defending once these
attack vectors have been utilized to attack the hypervisor,
we take the new approach of removing the attack surface.
In doing so, we have a goal of preserving the semantics of
today’s virtualization technology – namely that we can start
VMs with configurable parameters, stop VMs, and run mul-
tiple VMs on the same physical server. Additionally, the
NoHype architecture is designed to be realizable on today’s
commodity hardware. In subsequent sections we discuss the
key ideas of the NoHype architecture which are:

• pre-allocating memory and cores,
• using only virtualized I/O devices,
• short-circuiting the system discovery process, and
• avoiding indirection.

4.1 Pre-allocating Memory and Cores
One of the main functions of the hypervisor is dynami-

cally managing the memory and processor cores’ resources
toward the goal of overall system optimization. By dynam-
ically managing the resources, VMs can be promised more
resources than are actually physically available. This over-
subscription is heavily used in enterprises as a way to consol-



idate servers. In a hosted cloud computing model, however,
oversubscription is at odds with the expectations of the cus-
tomer. The customer requests, and pays for, a certain set
of resources. That is what the customer expects to receive
and not the unpredictable performance and extra side chan-
nels often associated with oversubscription. Rather than
relying on customers underutilizing their VMs, the cloud in-
frastructure provider could instead simply capitalize on the
rapidly increasing number of cores and memory in servers to
host more VMs per physical server (even without oversub-
scription). With NoHype we pre-allocate the processor cores
and memory so that a hypervisor is not needed to manage
these resources dynamically – this is possible in hosted cloud
computing since the customer specifies the exact resources
needed before the VM is created.

Today, the hypervisor dynamically manages the proces-
sor cores through the scheduling functionality. Since the
number of cores is specified by the customer before the VM
is created, in NoHype we dedicate that number of cores to
the specific VM. This is not to be confused with pinning a
VM (also called setting the processor core affinity of a VM),
which is a parameter to the hypervisor scheduling function
to configure the restrictions of which cores a given VM is al-
lowed to run on. Additionally, today when the cores are not
dedicated to a single VM and when the core which the VM
is scheduled on can change, the hypervisor must emulate the
local APIC by providing a timer and handling IPIs, which
are functionalities that the guest OS would expect from a
local APIC. Since with NoHype, a core is dedicated to a
given VM, we no longer need to emulate this functionality
and can allow a guest to use the local APIC directly. While
this gives the guest OS direct control over the hardware local
APIC and opens a new possibility for a guest VM to send
a malicious interprocessor interrupt (IPI) to other VMs, we
show in our security analysis in Section 6.2 that this can be
handled with a slight modification to the way the guest VM
handles IPIs.

Similar to pre-allocating processor cores, in NoHype we
also pre-allocate the memory. In order to remove the vir-
tualization layer, we can again capitalize on the use model
where customers of the cloud infrastructure provider spec-
ify the amount of memory for their VMs. This means we
can pre-allocate resources rather than having a hypervisor
dynamically manage them. A key to isolating each virtual
machine is making sure that each VM can access its own
guest physical memory and not be allowed to access the
physical memory of other VMs. Without an active hyper-
visor we must utilize the hardware to enforce the memory
isolation by capitalizing on the hardware paging mechanisms
available in modern processors.

4.2 Using only Virtualized I/O Devices
I/O devices are another important component that is ad-

dressed in the NoHype architecture. With NoHype, we ded-
icate I/O devices to the guest VM so we do not need vir-
tualization software to emulate these devices. Of course,
dedicating a physical I/O device to each VM does not scale.
With NoHype, the devices themselves are virtualized. How-
ever, a VM running ‘in the cloud’ has no need for peripheral
devices such as a mouse, VGA, or printer. It only requires
network connection (NIC), storage, and potentially a graph-
ics card (which is increasingly used for high-performance
general-purpose calculations). So, only a limited number of

devices with virtualization support is needed. Today, NICs
with virtualization support are already popular and stor-
age and graphics devices will be soon. Moreover, networked
storage can be utilized in lieu of a virtualized (local) stor-
age device – making the unavailability of virtualized storage
devices only a minor limitation.

NoHype capitalizes on modern processors for both direct
assignment of devices as well as virtualization extensions
in modern commodity devices. VMs control the devices
through memory-mapped I/O. The memory-management
hardware of modern commodity processors can be config-
ured so that the VM can only access the memory of the de-
vice that is associated with it (and the device can also only
access the memory of its associated VM). Further, virtual-
ization extensions are available in modern commodity de-
vices. For example, SR-IOV2 [7] enabled device announces
itself as multiple devices on the PCI bus. The functional-
ity of these devices is separated into board-wide functions
(known as physical functions) which are controllable only by
the host OS , and functions which are specific to the indi-
vidual virtual devices (known as virtual functions) that can
be assigned to different guest VMs.

4.3 Short-Circuiting the System Discovery
To run on a variety of platforms, most operating systems

automatically discover the configuration of the underlying
system. This is done by the guest OS kernel during its ini-
tial loading. To minimize changes to the guest OS, the No-
Hype architecture allows the guest OS to perform its normal
bootup procedure, but slightly modifies it to cache system
configuration data for later use. This is supported by a tem-
porary hypervisor to overcome current limitations of com-
modity hardware. For example, to determine which devices
are available, the guest OS will perform a series of reads to
the PCI configuration space in order to determine what de-
vices are present. This PCI configuration space, along with
“system discovering” instructions such as CPUID, are not
virtualized by today’s hardware.

This modified guest OS kernel is provided by the cloud
infrastructure provider – a practice that is common today
to make it easier for customers to start using the cloud
provider’s infrastructure. This becomes a requirement in the
NoHype architecture to ensure that no customer code exe-
cutes while any underlying virtualization software is present
– since the customer code may attempt to attack this tem-
porary hypervisor. Additionally, as minimal changes are
required to ensure all system information is discovered only
during guest OS initialization, the cloud provider can make
these minimal changes for the benefit of all of its customers.
Importantly, this does not restrict what applications and
guest OS kernel modules the customer can run, so restrict-
ing the customer’s choice to a fixed set of guest OS kernels
is not a significant problem.

Once the initial guest OS kernel bootup sequence is com-
plete and the underlying system configuration has been
learned by the guest OS, the temporary hypervisor is dis-
abled. At this point the guest VM execution switches from
code under the control of the cloud infrastructure provider
to the customer’s code which can run any applications and
load any guest OS kernel modules desired.

In addition to supporting the device discovery and sys-
tem information instructions, the guest OS will utilize one

2SR-IOV is the Single-Root I/O Virtualization specification.



additional device during its initialization. In particular, a
high precision timer, such as the high-precision event timer
(HPET), is needed temporarily during the boot process of
the Linux kernel. First, it is used as an external reference
to determine the clock frequency of the processor. The lo-
cal APIC timer is configured to generate an interrupt in a
certain number of clock cycles (rather than certain time).
Therefore, it is important to know the exact frequency of
the processor clock so the local APIC can be used as an ac-
curate timer3. Second, this high precision timer is used to
emulate the CMOS-based real-time clock – that is, the bat-
tery backed clock which tells the date and time. Again, the
temporary hypervisor can emulate this functionality to let
the guest discover the processor core’s frequency and get the
time of day. After this, the clock is not needed anymore4.

Finally, since we allow this system discovery only during
bootup, the OS must be sure to gather all of the informa-
tion that may be needed over the lifetime of the VM. We
capitalize on the fact that we are providing the guest OS
kernel by making minor modifications so that the informa-
tion is gathered during guest OS bootup and cached by the
OS. This removes the need for instructions like the CPUID
to run during the lifetime of the OS to determine hardware
configuration, and therefore the need for a hypervisor re-
sponse.

4.4 Avoiding Indirection
Today, because hypervisors present an abstracted view of

a machine that is not a one-to-one mapping of virtual to real
hardware, they must perform indirections that map the vir-
tual view to real hardware. Since we are bringing the guest
virtual machine in more direct contact with the underlying
hardware, we avoid these indirections, and therefore, remove
the need for a hypervisor to perform them.

One such indirection is involved in the communication be-
tween cores. Hypervisors present each VM with the illusion
of running on a dedicated system. As such, the hypervisor
presents each VM with processor IDs that start at 0. Today,
the physical cores in the processor can be shared by more
than one VM and the core that a VM is running on can
be changed by the hypervisor’s scheduler. Because of this,
the hypervisor needs a map between the view presented to
the VM and the current configuration in order to support
communication between the VM’s virtual cores. When ded-
icating cores to VMs, as is the case with NoHype, the guest
VM can access the real processor ID and avoid the need for
indirection.

Indirection is also used in delivering interrupts to the cor-
rect VM. For the same reason that the processor core ID
requires indirection (VMs can share cores and can move be-
tween cores), the hypervisor has to handle the interrupts
and route them to the correct VM. When dedicating cores
to VMs, we remove the need for the re-routing as interrupts
go directly to the target VM.

5. PROTOTYPE DESIGN
In this section we present the prototype of our NoHype

system. Rather than write from scratch all of the necessary

3In newer processors the local APIC runs at a fixed fre-
quency regardless of the processor core’s idle states [2] so it
can be used to keep track of processor ticks.
4The network time protocol can be used to ensure the clock
stays accurate.

software to setup and boot a guest virtual machine, we in-
stead utilize existing virtualization technology which must
also provide this functionality. We base our prototype off of
Xen 4.0, Linux 2.6.35.4 as the guest OS, and an Intel XEON
W5580 processor. For the virtualized network card we used
one with the Intel 82576 Ethernet controller. We utilized
networked storage instead of a virtualized disk, since there
are no commercially available drives which support SR-IOV
at this time. In particular we used iPXE[5] for a network
boot to fetch the guest OS kernel along with iSCSI [27] for
the guest VM’s storage.

In order to understand the details of what changes were
required to the various software components, it is useful to
understand what is happening during the various phases of
execution. Shown in Figure 3 is a time line of a guest VM’s
life time – from creation to shutdown. The following subsec-
tions will detail each phase and discuss the changes we made
to Xen or Linux to support that phase. We will wrap up the
section by presenting an evaluation of the raw performance
improvements seen with our prototype.

5.1 VM Creation
Independent of the interface that is presented to the cus-

tomer for managing virtual machines, eventually, a request
from the customer will result in a request sent by the cloud
management software to the system software running on a
specific server to create a virtual machine. This request will
specify all of the configuration details, such as the amount
of memory, the number of cores, and what (virtual) devices
to assign to the VM.

During this phase all of the resources are pre-allocated
and the virtualized I/O devices are assigned. Here, Xen
already provides all of the required functionality. The man-
agement software runs in Dom0, Xen’s privileged VM, and
we restricted it to execute only on core 0, as shown in Fig-
ure 3(a). The VM initialization code then configures the
hardware mechanisms which will enforce memory allocation
– in particular, the extended page tables (EPT) in the In-
tel processors. With NoHype, we require that these tables
be preset so that there is no need for a hypervisor which
manages memory translation dynamically. Xen’s VM ini-
tialization code already has such pre-setting of EPT entries
for this purpose. The VM initialization code also includes
the physical function driver for the NIC which sets up the
registers in the device not accessible to guest VMs – e.g.,
the MAC address, multicast addresses, and VLAN IDs.

For pre-allocating processor cores, Xen’s VM initialization
code has the ability to pin a VM to a set of cores. It does
this by setting the processor core affinity of the VM which
causes the scheduler function to re-schedule the VM on the
selected core and add it to the list of VMs for which it can
choose between for that core. Note that while pinning sets
which cores a given VM can run on, it does not restrict the
pinning of multiple VMs to the same core. For NoHype, the
management software needs to keep track of which cores are
already assigned and only pin VMs to unused cores.

Finally, Xen’s VM initialization code allocates the virtual-
ized NIC(s) via the PCI pass through mechanism supported
in Xen. That is, it sets EPT entries to enable the device’s
memory range to be mapped to the VMs memory space. It
also utilizes the VT-d [4] extensions in the Intel architecture
to allow the device to DMA directly into the VM’s memory.



(a) Creation. (b)Bootup. (c) Disengagement (d) Execution/Shutdown.

Figure 3: The four stages of a VM’s lifetime in a NoHype system.

5.2 Guest VM bootup
Once the VM is created, its boot process is kicked off, as

seen in Figure 3(b). We piggyback on Xen’s inclusion of
a bootloader called “hvmloader” (hvm stands for hardware
virtual machine, which indicates the processor has certain
virtualization capabilities). The hvmloader is the first soft-
ware that executes inside the guest VM. It has network boot
capabilities through the inclusion of iPXE[5] which enables
it to fetch, in our case, the guest OS kernel and initial RAM
disk5. Once the guest OS kernel is loaded and ready to boot,
the hvmloader sets the guest OS kernel parameters to pass
information to the guest OS and jumps to the kernel.

During the operating system bootup, the guest OS kernel
will perform a great deal of system discovery – in particular,
device discovery as well as discovering the processor capabil-
ities. We discuss each of these in further detail below. Recall
that during this phase, a temporary hypervisor is present to
support the system discovery.

5.2.1 Discovering Devices
In order to determine what devices are present, in par-

ticular PCI devices, the guest operating system queries a
known range of memory addresses. If the response to the
read of a particular memory address returns a well-known
constant value, that means there is no device present at that
address. Otherwise the device would return a device identi-
fier. In Xen based VMs, reads to these addresses trap to the
hypervisor. Xen then passes the request to QEMU running
in Dom0 which handles it. In QEMU today, there is an as-
sumption of a minimal set of devices being present (such as
VGA). We modified QEMU to return “no device” for all but
a network card.

Upon discovering the device, the guest OS then sets up
the interrupts for that device by choosing vectors and setting
up internal tables that associate the vectors with interrupt
handler functions. When the guest OS configures the I/O
APIC with this information, the request traps to the hy-
pervisor which virtualizes the I/O APIC in software. Since
the guest’s view of available vectors does not match what is
actually available, Xen chooses a vector which is free, and
stores a mapping between the actual vector and what the
guest expects. This means that Xen would typically han-
dle the interrupt, perform a mapping, and then inject an
interrupt with the mapped vector. However, since we will
eventually be disengaging the hypervisor, we modified both

5The release version of Xen includes gPXE. iPXE is a more
actively developed branch and one for which we added a
driver for the Intel 82576 Ethernet controller.

Xen and the guest Linux kernel to make the vector chosen
by each to be configurable. Linux is made configurable so
that it chooses a vector which is actually available and so
that it does not choose the same vector as another VM.
Xen is made configurable so that the management software
can ensure that the Xen vector assignment function will also
choose this vector. Once the interrupts are set up, the guest
OS sets up the device itself through the virtual function
driver’s initialization routine. In the particular NIC we used
for our prototype, part of this initialization utilizes a mail-
box mechanism on the NIC for interacting with the physical
function driver in the host OS to perform a reset and re-
trieve the MAC address. After the virtual function driver
is initialized, interaction with the physical function driver is
not needed.

5.2.2 Discovering Processor Capabilities
In addition to needing to know which devices are available,

the guest OS needs to know details about the processor itself
– in particular, (i) the clock frequency, (ii) the core identifier,
and (iii) information about the processor’s features.

The frequency that the processor runs at must be cal-
culated from a reference clock. For this, we provide a high
precision event timer (HPET) device to the guest VM. Since
this device is not virtualized in hardware, we only have a
software virtualized HPET providing the guest VM with pe-
riodic interrupts during bootup when the operating system
will need it. Once the operating system knows the clock
frequency of the core, it can use the per-core local timer as
its timer event source rather than the HPET.

The core identifier is used so that when the software run-
ning on one core wants to send an interprocessor interrupt
(IPI) to another core, it knows what to set as the destina-
tion. In Xen, this identifier is assigned by Xen and any IPIs
involve a mapping within the hypervisor to the actual identi-
fier. In order to unwind this indirection, we modified Xen to
pass the actual identifier of the core, which in Intel proces-
sors is the local advanced programmable interrupt controller
(APIC) ID. This identifier can be obtained by the guest op-
erating system in three ways, each of which we modified.
First, it can be obtained in the APIC ID register within the
local APIC itself. Second, it can be obtained through the
CPUID instruction by setting the EAX register to ‘1’. Fi-
nally, it can be obtained with the Advanced Configuration
and Power Interface (ACPI) table, which is written by the
bootloader (hvmloader for Xen) as a way to pass information
to the operating system.

Finally, information about the processor’s features such



as cache size and model number, are obtained through the
CPUID instruction. This is an instruction that applications
can use in order to do some processor-specific optimiza-
tions. However, in a virtual environment the capabilities
of the processor are different than the actual capabilities,
and therefore when the instruction is encountered, the pro-
cessor causes an exit to the hypervisor which emulates the
instruction. We modified the Linux kernel to perform this
instruction during boot-up with each of the small number of
possible input values, storing the result for each. We then
make this information available as a system call. Any appli-
cation that calls the CPUID instruction directly will have to
be modified so they do not cause a VM exit. While this may
sound like a major hurdle, in reality, it is not. We did not
encounter any such applications, but instead encountered
the use of the CPUID instruction in a small number of stan-
dard libraries such as libc which calls CPUID whenever a
process is created. We modified libc to use the system call
instead of the instruction. While these are not part of the
guest OS kernel (and therefore not provided by the cloud
provider), they can be made available for customers to eas-
ily patch their libraries and do not require a recompilation
of the application. Further, for any application which does
make use of CPUID and cannot be recompiled or modified,
simple static binary translation can be used to translate the
CPUID instruction into code which performs the system call
and puts the results in the expected registers.

5.3 Hypervisor Disengagement
At the end of the boot process, we must disengage the

hypervisor from any involvement in the execution of the
guest VM. We achieve this through a guest OS kernel mod-
ule which is loaded and unloaded within the init script of
the initial RAM disk (initrd). As shown in Figure 3(c),
this module simply makes a hypercall with an unused hy-
percall number (Dom0 communicates with the hypervisor
through hypercalls). The handler for this particular hyper-
call will perform the hypervisor disengagement for that core
and send an IPI to the other cores allocated to the VM to
signal to them that they need to perform the core-specific
disengagement functionality.

There are three main functions of this process. First, it
must take steps to remove the VM from several lists (such
as timers which are providing timer interrupts to the guest)
as well as remove the set of cores from the online proces-
sor cores mask (so Xen does not attempt to send any IPIs
to it). Second, the disengagement function must configure
the hardware such that the guest has full control over the
individual core. This includes settings within the virtual
machine control structure (VMCS)6 (e.g., setting the vir-
tualize APIC access bit to 0) as well as mappings in the
extended page tables (e.g., adding the local APIC’s memory
range so that it does not cause an EPT violation). Finally,
we must initialize the local APIC registers with values that
match what the guest operating system wrote. Before this
disengagement, Xen makes use of the local APIC itself and
presents a virtualized view to the guest (e.g., Xen uses a one-
shot timer as its own timer source but presents a periodic
timer to our Linux kernel). The disengagement function sets
the registers in the actual local APIC with the values that
are stored in the virtualized local APIC.

6The VMCS is used to manage transitions between the guest
virtual machine and the hypervisor.

Once the hypervisor disengagement process completes, ex-
ecution returns to the guest VM where the disengagement-
initiator module is unloaded and the iSCSI drive(s) for the
customer is mounted. Execution control is then transferred
(for the first time) to the user’s code.

5.4 Guest Execution and Shutdown
At this point, execution is under the complete control of

the guest, as shown in Figure 3(d). It can run applications
and load OS kernel modules. We have configured the system
such that anything the virtual machine may need to do, it
will be able to do. We consider any other actions to be illegal
(and potentially malicious). Many actions, such as accessing
memory outside of the allocated memory range, will cause
an exit from the VM. Since we consider them illegal, they
will result in the termination of this VM. Other actions, such
as sending messages to the physical function driver via the
mailbox functionality on a device, can be ignored.

Because of this restriction, we needed to modify the guest
Linux kernel slightly – these modifications do not affect an
application or kernel module’s interaction with Linux. That
is not to say we must trust the guest OS for the security
of the entire system, simply that in order for the guest VM
to run without causing a VM exit, Linux is configured to
not access devices that it is not using. In particular, Linux
assumes the presence of a VGA console and writes to the
fixed I/O port whether there is a VGA console or not. We
modified this assumption and instead made the use of a
VGA console configurable. Additionally, Linux makes the
assumption that if an HPET device is available for deter-
mining the clock frequency, it should be added to the list of
clock sources. Each of the clocks in this list are periodically
queried for its cycle count. As we have a time stamp counter
(TSC) also available, the HPET is not needed. We added a
configuration in Linux to specify whether the HPET device
is to be added to the list of clock sources or not.

However, one limitation of completely removing the avail-
ability of an HPET device is that we are now relying on the
local APIC timer. In processors before the current genera-
tion, this local APIC timer would stop when the core goes
into a deep idle state. Recent processors with the Always
Running APIC Timer (ARAT) feature are not subject to
this limitation. Unfortunately, we built our prototype on
a processor without this feature. To overcome this, rather
than buying a new processor, we simply faked that we have
it by (i) specifying that the processor has the ARAT ca-
pability in the response to the CPUID instruction, and (ii)
using the Linux parameter, max cstate, to tell Linux to not
enter a deep idle state (clearly not ideal, but acceptable for
a prototype).

Our timeline ends when the guest VM shuts down. A
guest VM can initiate the shutdown sequence itself from
within the VM. This will eventually result in an exit from
the VM, at which point the VM is terminated. However, we
cannot rely on customers to cleanly shutdown when their
time is up. Instead, we need to be able to force the shut-
down of a VM. We realize this by configuring the VMCS to
specify that the VM should exit when the core receives a
non-maskable interrupt (NMI). In this way, the hypervisor,
restricted to running core 0 at this point, can send an NMI,
forcing a VM exit, giving the VM exit handler the ability to
shutdown the VM.



5.5 Raw Performance Evaluation
Our prototype was built as a demonstration that we can

actually realize NoHype on today’s commodity hardware.
In addition to the security benefits, which we analyze in
Section 6, removing a layer of software leads to performance
improvements, since with NoHype, there will no longer be
the number of VM exits as seen in Figure 2.

We experimented with both the SPEC benchmarks which
analyze the performance of the system under different work-
loads as well as a VM running Apache to capture a common
workload seen in cloud infrastructures today. In each case
we ran the experiment with both NoHype and stock Xen
with a hardware virtual machine guest. With the NoHype
system, we utilized our modified Linux kernel, whereas in
the Xen system we utilized the unmodified 2.6.35.4 Linux
kernel. Each VM was configured with two cores, 4GB of
memory, and two network cards that were passed through
(one an Internet facing NIC, and one for communicating
with the iSCSI server). There was no device emulation and
no other VMs were running on the system which might in-
terfere with performance.

Shown in Figure 4 are the results of our experiments. We
saw an approximately 1% performance improvement across
the board. The lone exception to this was the gcc bench-
mark, which saw better performance with Xen than with
NoHype. We need to further investigate the cause of this,
but believe it to be related to our modifications to the guest
kernel. Also note that much of the major performance bot-
tlenecks associated with virtualization are alleviated with
the VT-d (to directly assign devices) and EPT (to allow
VMs to manage page tables) technologies and therefore al-
ready used in Xen. Our performance improvement comes
from removal of the VM exits and is on top of performance
gained from using VT-d and EPT hardware.

Figure 4: Raw performance of NoHype vs. Xen.

6. SECURITY ANALYSIS
In this section we present a security analysis of our No-

Hype architecture and its realization on today’s commodity
hardware. Our conclusion is that NoHype makes an impor-
tant improvement in the security of virtualization technol-
ogy for hosted and shared cloud infrastructures, even with
the limitations due to today’s commodity hardware.

6.1 Remaining Hypervisor Attack Surface
A NoHype system still requires system management soft-

ware (performing some of today’s hypervisor’s duties) to be

running on each server. While defending the interaction be-
tween the cloud manager and the system manager is our
future work, here we have concentrated on the surface be-
tween the guest VM and the hypervisor which is much larger
and more frequently used.

To initialize the guest VM, we use a temporary hypervi-
sor and a slightly modified guest OS for performing system
discovery tasks. The initial guest OS kernel is supplied and
loaded by the cloud infrastructure provider, thus the cus-
tomer has no control over the OS kernel which interacts
with the temporary hypervisor. The temporary hypervisor
is disabled (i.e., the VM is disengaged) before switching to
the customer’s code. By the time the customer’s code runs,
it does not require any services of the hypervisor (the system
discovery data is cached and the devices, memory and cores
are assigned). Any VM exit will trigger our kill VM routine
as previously described, thus denying a malicious customer
the opportunity to use a VM exit as an attack vector.

The ability of the guest VM to do something illegal, cause
a VM exit, and trigger system management software to take
action is itself a possible attack vector. The code handling
this condition is in the trusted computing base (TCB) of
a NoHype system, however, it is quite simple. After the
VM is disengaged we set a flag in memory indicating that
any VM exit should cause the VM to be terminated. The
code base found in the temporary hypervisor and privileged
system manger is never triggered by the guest VM after dis-
engagement. Similarly, it cannot be triggered by any other
running VM, as an exit from that VM will only trigger the
kill VM routine.

6.2 VM to VM Attack Surface
After disengaging a VM, we give it full access to interpro-

cessor interrupts (IPIs). One limitation of today’s hardware
is that there is no hardware mask which can be set to prevent
a core from sending an IPI to another core. This introduces
a new but limited ability for VM to VM communication.
Now the VM has the ability to send an IPI to any other
core without that core being able mask it or even know who
sent it. The system management software which is pinned
to one of the cores may also be a target of such an attack.

A preliminary pragmatic solution is presented here. Since
the IPI does not contain any data and is only used as a trig-
ger, the guest OS can defend against this attack by slightly
modifying the way it handles IPIs. For each type of IPI, a
shared region in memory can hold a flag that can be set by
the sending core and then checked and cleared by the receiv-
ing core. Given that no VM can access memory of another
VM, an attacker will not have the ability to set any of these
flags. Therefore, the receiver of the IPI can simply ignore
the IPI if the flag is not set.

While this ability for guest VMs to send IPIs poses very
little security risk, it has the potential to enable an attacker
to launch a denial of service attack by constantly sending
IPIs to a given core. Fortunately, the extent to which they
can possibly degrade performance is extremely limited. We
set up an experiment by configuring an attacker VM with
up to 8 cores, each sending IPIs at their maximum rate, and
a victim with 2 cores. The results, shown in Figure 5, show
that the performance degradation is limited to about 1%.
Note that while we experimented with 8 cores, using 4 at-
tacker cores was sufficient to saturate the rate at which IPIs
can be sent in our test system. We used the Apache bench-



Figure 5: Effect of IPI attack on benchmarks.

mark and a compute intensive benchmark (462.libquantum)
from the SPEC 2006 suite. Because the bus used to deliver
IPIs is the same bus used for interrupts (the APIC bus), the
performance of Apache was affected slightly more because it
is a more interrupt driven application. The 462.libquantum
benchmark is compute intensive and captures the overhead
of simply having to process each interrupt.

6.3 Isolation between VMs
With NoHype, we rely on hardware mechanisms to pro-

vide isolation of access to shared resources. Most important
are the confidentiality and integrity of each VM’s memory.
We utilize Xen’s code which pre-sets the entries in the ex-
tended page tables (EPT) to assign physical pages to a par-
ticular VM. Any access to memory by a VM will cause the
processor hardware to perform a translation using the EPT.
When accessing memory outside of the given VM’s allowed
pages, a violation will occur and the VM will exit to the hy-
pervisor context (which after disengagement is our kill VM
routine). Because of this, the confidentiality and integrity
are tied to the correctness of the hardware EPT implemen-
tation, which we believe will have undergone significant test-
ing and verification. While all modern hypervisors also use
the EPT mechanism, they may update the mapping when
they provide additional capabilities such as transparent page
sharing among VMs [8]. Consequently, isolation today de-
pends not only on the hardware’s correctness but also on
the complex hypervisor software.

Also of importance is the performance isolation between
VMs in the face of resource sharing. Without a hypervisor,
as in NoHype, hardware is relied on to provide the isolation.
The main shared resources of concern are the network card
(and associated bandwidth) as well as the memory bus. The
network card has queues with flow control mechanisms that
provide a fair allocation of resources. The memory controller
and bus, on the other hand, do not in today’s processors [28].

Figure 6: Quantification of the memory side-

channel.

To quantify the quality of memory isolation, we ran one
VM with a varying workload and examined the performance
of a second VM with a fixed workload. In particular, the
fixed workload VM had the memory intensive 429.mcf bench-
mark from SPEC 2006 suite running. In the varying work-
load VM we experimented with both Apache, under varying
number of concurrent requests, as well as varying the num-
ber of instances of the 429.mcf benchmark. The results are
shown in Figure 6. This experiment can be viewed either
in terms of (i) an attacker attempting to affect the perfor-
mance of a victim, or (ii) an attacker attempting to learn
information about the victim (i.e., utilize it as a side channel
to answer questions such as “how loaded is my competitor”).
In either case, there is some interference between each work-
load, but we believe the interference is not significant enough
to completely deny service or to learn sensitive information
such as cryptographic keys [17].

6.4 VMs Mapping Physical Infrastructures
Work by Ristenpart, et al., [30] has raised the concern of

infrastructure mapping attacks. With NoHype, the guest
VMs have a more direct interaction with the hardware and
could abuse that to try to map an infrastructure. One ex-
ample may be a malicious VM reading the APIC ID num-
bers to identify the underlying physical cores and use that
information to help narrow down where in the provider’s in-
frastructure the VM is located. This may be mitigated by
randomizing APIC IDs of the cores (which can be done at
system boot time). Even if a malicious VM is able to deter-
mine that it is co-located with a victim VM, our approach
of eliminating the attack surface denies it the opportunity
to attack the hypervisor and by extension the victim VM.

7. RELATED WORK
The related work can be categorized in four main areas:

minimizing the hypervisor, proposing a new processor ar-
chitecture, hardening the hypervisor, or giving VMs more
direct access to hardware.

Minimizing the hypervisor: Work on minimizing hy-
pervisors aims to reduce the amount of code within the
hypervisor, which should translate to fewer bugs and vul-
nerabilities. One example is SecVisor [32], a hypervisor
which supports a single guest VM and protects that VM
from rootkits. Another example is TrustVisor [26] which is
a special-purpose hypervisor for protecting code and data
integrity of selected portions of the application. Previous
minimal hypervisors are not practical for deployment in the
hosted cloud computing model where multiple VMs from
multiple customers run on the same server. With NoHype,
we show how to remove attack vectors (in effect also re-
ducing the hypervisor) while still being able to support the
hosted cloud computing model.

New processor architectures: In another approach,
researchers propose building new processor architectures
which explicitly offer new hardware functionality for improv-
ing security. Much work has been done on new hardware
mechanisms for protecting applications and trusted software
modules [24, 34, 21, 12], including Bastion [10] which uses a
full hypervisor. Unfortunately, such approaches do require
new microprocessors and cannot be deployed today, unlike
our solution. Additionally, the use model for cloud com-
puting has some similarities with that of mainframes. The
architectures targeting these systems, such as the IBM Sys-



tem z [29], have support for creating logical domains which
enforce partitioning of resources such as CPU and memory
in hardware. In contrast, NoHype focuses on commodity
x86 servers used by cloud infrastructure providers.

Hardening the hypervisor: Much of hypervisor-related
work has centered around hardening of the hypervisor, such
as [23, 31, 33]. Especially interesting is HyperSafe [35] which
aims to protect a hypervisor against control-flow hijacking
attacks. They use a non-bypassable memory lockdown tech-
nique (only a special routine in the hypervisor can write to
memory) coupled with a restricted pointer indexing tech-
nique (all function calls in the hypervisor are transformed
to jumps from a special table). While making it more dif-
ficult to subvert the hypervisor, these additions add about
a 5% performance overhead and any bugs in the hypervisor
could still be exploited through one of the attack vectors.
Recently, HyperSentry [9] used the SMM (system manage-
ment mode) to bypass the hypervisor for integrity measure-
ment purposes. Unfortunately, the integrity measurements
only reveal traces of an attack after it has already happened
and are limited to protecting against attacks which persis-
tently modify the hypervisor executable. While the authors
report being able to invoke the measurement every 8 sec-
onds in HyperSentry, this still leaves a window for attack-
ers. Furthermore, their approach results in a 2.4% overhead
if HyperSentry protections are invoked every 8 seconds. In
contrast, NoHype prevents the attacks from happening in
the first place, and does this with about a 1% performance
improvement.

Direct access to hardware: NoHype shares much with
exokernels such as ExOS [13] and Nemesis [22] which essen-
tially reduce an operating system to providing only arbitra-
tion to shared resources and give applications more direct
access to hardware. We capitalize on modern hardware ad-
vances to push it even further where the thin software layer
from the exokernels is realized in hardware and full com-
modity operating systems can be run, rather than requiring
applications to be redesigned for the exokernel environment.
There have also been proposals that enable a single operat-
ing system to run without a virtualization layer but can in-
sert a virtualization layer when needed – e.g., to run a second
VM during planned maintenance [25] or to utilize migration
for consolidation [19]. NoHype, on the other hand, can run
multiple VMs simultaneously, each with direct access to its
allocated hardware.

8. CONCLUSIONS AND FUTURE WORK
Today, the hypervisor is the all-powerful system software

layer which controls the resources of a physical system and
manages how they interact with the guest VMs. Because
of its central role, the hypervisor, and other parts of the
virtualization software, is a potent target for attacks, espe-
cially in shared infrastructures which allow multiple parties
to run virtual machines. In this paper, we presented the
complete design, implementation and evaluation of a work-
ing NoHype system on today’s commodity hardware which
removes the attack surface of the hypervisor and thus elim-
inates the vector by which VMs can exploit vulnerabilities.
We do this by eliminating the VM’s need for a hypervisor
through (i) pre-allocation of processor cores and memory
resources, (ii) using only virtualized I/O devices, (iii) sup-
porting the system discovery process with a temporary hy-
pervisor and a slightly modified guest OS, and (iv) avoiding

any indirection that would necessitate having a hypervisor.
This allows us to remove the interaction between the guest
VMs and hypervisor and eliminate the attack surface which
a malicious VM could use to compromise the virtualization
layer, and then in turn attack or obstruct other VMs. In
addition, our evaluation with benchmarks showed about 1%
faster run times.

While NoHype significantly advances the security of shared
cloud infrastructures, today’s commodity hardware imposes
some limitations; as future work, we will examine minimal
hardware changes to further tighten the security of a No-
Hype system. Also, we will add support for live VM mi-
gration, particularly for the scenario where the initiator of
the migration (the cloud provider) differs from the owner of
the VM (the cloud customer). The disruption this process
causes to the customer’s VM depends on the workload of
the VM [11], yet the provider does not know the workload
or whether it is a particularly bad time to disrupt the guest
VM. We believe the correct model for migration is for the
provider to notify the customer ahead of time, allowing the
customer to prepare for the transient disruption (e.g., by
shedding load or redirecting new requests) and participate
in the migration itself (e.g., through support for OS migra-
tion [20] in the guest). Finally, we plan to explore ways for
the customer to run virtualization software of its own to en-
able nested virtualization, which may also aid in supporting
live migration.

9. ACKNOWLEDGMENTS
This work was supported in part by National Science

Foundation grants: EEC-0540832 and CCF-0917134. Eric
Keller was supported through an Intel Ph.D. Fellowship. We
also benefited from equipment donation from Intel.

We would like to thank Tim Deegan from Citrix, An-
drew Warfield from University of British Columbia, and Don
Banks from Cisco, for discussions and feedback on our No-
Hype design. Additionally, we would like to thank our shep-
herd, Herbert Bos, and the anonymous CCS reviewers for
their comments and suggestions.

10. REFERENCES
[1] ab - Apache HTTP server benchmarking tool. http:

//httpd.apache.org/docs/2.0/programs/ab.html.

[2] Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 2A: Instruction Set Reference, A-M,
page 274. http:
//www.intel.com/products/processor/manuals/.

[3] Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3B: System Programming Guide, Part
2. http:
//www.intel.com/products/processor/manuals/.

[4] Intel Corporation: Intel Virtualization Technology for
Directed I/O. http://download.intel.com/
technology/itj/2006/v10i3/v10-i3-art02.pdf.

[5] iPXE: Open Source Boot Firmware.
http://ipxe.org/.

[6] National Vulnerability Database, CVE and CCE
Statistics Query Page.
http://web.nvd.nist.gov/view/vuln/statistics.

[7] PCI SIG: PCI-SIG Single Root I/O Virtualization.
http://www.pcisig.com/specifications/iov/

single_root/.



[8] Understanding Memory Resource Management in
VMware ESX Server. VMWare White Paper. 2009.
www.vmware.com/files/pdf/perf-vsphere-memory_

management.pdf.

[9] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang,
and N. C. Skalsky. HyperSentry: Enabling stealthy
in-context measurement of hypervisor integrity. In
ACM Conference on Computer and Communications
Security (CCS), pages 38–49, October 2010.

[10] D. Champagne and R. B. Lee. Scalable architectural
support for trusted software. In IEEE International
Symposium on High Performance Computer
Architecture (HPCA), pages 1–12, Jan. 2010.

[11] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In 2nd Symposium on Networked
Systems Design and Implementation (NSDI), 2005.

[12] J. Dwoskin and R. B. Lee. Hardware-rooted trust for
secure key management and transient trust. In ACM
Conference on Computer and Communications
Security (CCS), Oct. 2007.

[13] D. R. Engler, M. F. Kaashoek, and J. O’Toole.
Exokernel: An operating system architecture for
application-level resource management. In Symposium
on Operating Systems Principles (SOSP), December
1995.

[14] F. Gens. IT cloud services user survey, pt.2: Top
benefits & challenges, Oct. 2008.
http://blogs.idc.com/ie/?p=210.

[15] J. L. Henning. SPEC CPU2006 benchmark
descriptions. SIGARCH Comput. Archit. News,
34:1–17, September 2006.

[16] E. Keller, J. Szefer, J. Rexford, and R. B. Lee.
NoHype: Virtualized cloud infrastructure without the
virtualization. In International Symposium on
Computer Architecture (ISCA), June 2010.

[17] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side
channel cryptanalysis of product ciphers. In J.-J.
Quisquater, Y. Deswarte, C. Meadows, and
D. Gollmann, editors, Computer Security: ESORICS
98, volume 1485 of Lecture Notes in Computer
Science, pages 97–110. 1998.

[18] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. seL4: Formal verification of an OS
kernel. In Symposium on Operating Systems Principles
(SOSP), pages 207–220, October 2009.

[19] T. Kooburat and M. Swift. The best of both worlds
with on-demand virtualization. In Workshop on Hot
Topics in Operating Systems (HotOS), May 2011.

[20] M. A. Kozuch, M. Kaminsky, and M. P. Ryan.
Migration without virtualization. In Workshop on Hot
Topics in Operating Systems (HotOS), May 2009.

[21] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin,
and Z. Wang. Architecture for protecting critical
secrets in microprocessors. In International Symposium
on Computer Architecture (ISCA), June 2005.

[22] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The design
and implementation of an operating system to support

distributed multimedia applications. IEEE Journal on
Selected Areas in Communication, 14(7), Sept. 1996.

[23] C. Li, A. Raghunathan, and N. K. Jha. Secure virtual
machine execution under an untrusted management
OS. In Proceedings of the Conference on Cloud
Computing (CLOUD), July 2010.

[24] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. Mitchell, and M. Horowitz. Architectural
support for copy and tamper resistant software. In
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), November 2000.

[25] D. E. Lowell, Y. Saito, and E. J. Samberg.
Devirtualizable virtual machines enabling general,
single-node, online maintenance. In Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), October 2004.

[26] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. TrustVisor: Efficient TCB
reduction and attestation. In IEEE Symposium on
Security and Privacy, pages 143–158, May 2010.

[27] K. Z. Meth and J. Satran. Design of the iSCSI
protocol. In IEEE Symposium on Mass Storage
Systems, April 2003.

[28] T. Moscibroda and O. Mutlu. Memory performance
attacks: Denial of memory service in multi-core
systems. In Proceedings of USENIX Security
Symposium, August 2007.

[29] L. Parziale, E. L. Alves, E. M. Dow, K. Egeler, J. J.
Herne, C. Jordan, E. P. Naveen, M. S. Pattabhiraman,
and K. Smith. Introduction to the new mainframe:
z/VM basics, Nov. 2007. http://www.redbooks.ibm.
com/redbooks/pdfs/sg247316.pdf.

[30] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud: Exploring information
leakage in third-party compute clouds. In ACM
Conference on Computer and Communications
Security (CCS), November 2009.

[31] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. V. Doorn,
J. L. Griffin, S. Berger, R. Sailer, E. Valdez, T. Jaeger,
R. Perez, L. Doorn, J. Linwood, and G. S. Berger.
sHype: Secure hypervisor approach to trusted
virtualized systems. Technical Report RC23511, IBM
Research, 2005.

[32] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor:
A tiny hypervisor to provide lifetime kernel code
integrity for commodity OSes. SIGOPS Oper. Syst.
Rev., 41(6):335–350, December 2007.

[33] U. Steinberg and B. Kauer. NOVA: A
microhypervisor-based secure virtualization
architecture. In European Conference on Computer
Systems, April 2010.

[34] G. E. Suh, C. W. O’Donnell, I. Sachdev, and
S. Devadas. Design and implementation of the AEGIS
single-chip secure processor using physical random
functions. In International Symposium on Computer
Architecture (ISCA), June 2005.

[35] Z. Wang and X. Jiang. HyperSafe: A lightweight
approach to provide lifetime hypervisor control-flow
integrity. In IEEE Symposium on Security and
Privacy, pages 380–395, May 2010.


