
Better by a HAIR:

Hardware-Amenable Internet Routing

Firat Kiyak∗ Brent Mochizuki∗ Eric Keller† Matthew Caesar∗

∗University of Illinois at Urbana-Champaign †Princeton University

{fkiyak2,mochizu1,caesar}@illinois.edu ekeller@princeton.edu

Abstract—Routing protocols are implemented in the form of
software running on a general-purpose microprocessor. However,
conventional software-based router architectures face significant
scaling challenges in the presence of ever-increasing routing
table growth and churn. Recent advances in programmable
hardware and high-level hardware description languages provide
the opportunity to implement BGP directly at the hardware
layer. Hardware-based implementation allows designs to take
advantage of the parallelization and customizability of the
underlying hardware to improve performance. As a first step
in this direction, we design and implement a hardware-based
BGP architecture. To understand the challenges in doing this,
we propose an architecture and logical design for the core
components of BGP running as a logical circuit in an FPGA.
We then enumerate sources of complexity and performance
bottlenecks, and derive modifications to BGP that reduce com-
plexity of hardware offloading. Our results based on update
traces from core Internet routers indicate an order of magnitude
improvement in processing time and throughput.

I. INTRODUCTION

The Internet is a very large and complicated distributed sys-

tem. Selecting a route involves a computation across millions

of routers spread over vast distances, multiple routing pro-

tocols, and highly customizable routing policies. To perform

this computation based on up-to-date information, the state of

network paths is propagated across ISPs through the use of the

Border Gateway Protocol (BGP). While BGP has performed

this job well for many years, offering highly configurable op-

eration and control over propagation and selection of routes, it

is facing tremendous scaling challenges in modern networks.

BGP-speaking routers must process millions of updates daily

over hundreds of thousands of prefixes. Furthermore, update

arrivals are quite bursty in nature, providing a highly variable

workload for routers, and to avoid triggering outages and

routing loops routers must be provisioned for handling the

peak load. Worse still, the number of Internet routes and

their churn is steadily increasing, with predictions that current

router architectures may be unable to keep up [1].

To cope with these loads, some BGP implementations

leverage timers to rate-limit update traffic, and only periodi-

cally exchange deltas (differences) of routing state. However,

timers slow routing convergence by extending the time it takes

for routers to learn the current state of a route. Worsening

convergence leads to black holes, routing loops, and other

anomalies, increasing the potential for packet loss. Alterna-

tively, network operators incorporate flap damping into route

selection, by forcing less-stable routes to be artificially “held-

down” and withdrawn from use. While flap damping reduces

routing instability, it also harms availability, by removing

working paths from use. In fact, conventional wisdom is to

disable flap dampening, as it can be inadvertently set off

during path exploration and can sometimes leave a router

with no route for some periods of time, leading to black

holes [2]. Unfortunately, the availability and convergence

issues introduced by damping and timer-based approaches is

becoming even more serious, with the increasing levels of

Internet traffic and deployment of applications with real-time

requirements (gaming, virtual worlds, VoIP).

Traditionally, BGP is implemented in the form of a

software daemon running on a commodity microprocessor.

However, history has shown that when software designs hit

a performance wall, the wall can be overcome by hard-

ware offloading, as it allows the design to take advantage

of the parallelization and customizability of the underlying

hardware. While processing protocols in hardware introduces

several challenges, recent advances in hardware technologies

vastly simplify the process of hardware-based implementa-

tion. Hardware description languages like Verilog, SystemVer-

ilog and VHDL, tools for synthesizing transactional models

such as from Bluespec [3], and tools for compiling high-level

languages such as from Synfora [4] ease the ability to proto-

type and debug hardware. Advances in special-purpose hard-

ware with customized instruction sets for specific applications

(e.g., GPUs) are gaining increased acceptance and demand.

Reconfigurable hardware (e.g., FPGAs) enables hardware to

be updated and patched without physical replacement.

At the same time, implementing protocols in hardware

also offers some benefits. Direct implementation of hardware

allows the designer to leverage parallelism. Protocol messages

may be pipelined within the same circuit, and functional

blocks may be replicated to create multiple pipelines. Imple-

mentation in hardware allows the designer to leverage domain

knowledge of the protocol or workload to make common-case

operations traverse few gates or execute in few cycles. Finally,

we believe that with the advent of multi-core processors, the

increasing popularity of graphics processor programming [5],

and the increasing deployments of resource constrained and

embedded devices, programmers will need to be increasingly

aware of constraints of the underlying hardware.

Unfortunately, higher-layer network protocols like BGP

were not designed with hardware in mind, complicating the

ability to offload them into hardware and reducing efficiency

of the resulting design. To address this problem, our work

provides two key contributions:

1) To characterize complexity of hardware offloading, we

provide an empirical analysis of the challenges associ-

ated with offloading BGP into hardware. First, to study

inefficiencies and bottlenecks, we propose an architec-

ture and logical design for implementing a hardware-

based version of the BGP protocol (i.e., in the form of a

circuit running directly on a semiconductor device). We

provide circuit designs for the core components of the

BGP protocol, including memory management, route

selection logic, and packet parsing. Then, based on this

design, we enumerate features of BGP that increase

complexity of hardware-based implementation.

2) To mitigate complexity of BGP offloading, we propose

protocol changes to make BGP more amenable to

hardware-based operation. In particular, we design a

hardware-amenable variant of BGP (which we call

Hardware Amenable Internet Routing (HAIR)), which

simplifies offloading into hardware, while retaining

BGP’s semantics. Our design works by making three

key simplifications to BGP: (i) replacing variable length

fields in packets with fixed-length labels to simplify

parsing, (ii) replacing trie-based lookups by allowing

routers to directly index into routing state, and (iii) sim-

plifying decision logic by enabling routers to provide a

fixed ranking over routes (thereby avoiding issues that

can arise with use of MED).

While conventional wisdom is that higher-layer protocols

such as BGP must be implemented in software, we examine

the extreme design point of an all-hardware implementation

and find that modern technologies and several small protocol

changes make a hardware-targeted protocol design a better op-

tion, due to significant performance improvements. In partic-

ular, due to the increased parallelism achievable in hardware,

processing rate and latency are improved by multiple orders

of magnitude, and our hardware-amenable design improves

performance by an additional order of magnitude.

Roadmap: This paper proceeds as follows. Section II

describes some limitations of hardware offloading, and

overviews modern hardware design technologies that may

mitigate some of these limitations. We then describe our

design architecture for BGP in hardware in Section III,

along with a description of key performance bottlenecks.

We then propose design guidelines and a variant of BGP

(called HAIR) that is more amenable to hardware offloading

in Section IV. We then evaluate performance in Section V,

briefly summarize related work in Section VI, and conclude

in Section VII.

II. BACKGROUND

In this section we give some background to address some

common objections to the use of hardware offloading and

to understand the capabilities of modern FPGAs in order to

better understand the design.

A. Limitations of hardware-based implementation

The traditional arguments against offloading higher layer

protocols (some of which are outlined in [6]) are threefold:

the performance benefits might not outweigh the costs, it

harms the ability to update protocols or deploy new ones,

and it complicates implementation work. We discuss these

issues below. Although these objections still hold for many

protocols, we discuss why new technologies address these

traditional objections in certain circumstances.

1) Performance benefits and Moore’s law: General-

purpose CPUs have steadily increased in clock speed over

many years, with conventional wisdom that new CPUs double

their processing rate every two years. In the context of hard-

ware, a similar increase in performance has been observed,

with ASIC-based designs keeping up with the clock speeds of

conventional CPUs. However, while FPGAs have undergone

a similar performance improvement rate over the years, they

have consistently lagged behind CPU clock speeds by a

factor of roughly 10x. This gives general-purpose CPUs an

advantage in processing power.

However, modern CPUs no longer undergo regular in-

creases in processing speed, but instead are becoming more

parallel by offering multiple processing cores. Additionally,

FPGAs are still increasing in speed and hardware-based

implementations of protocols can be made extremely parallel.

Thus, considering hardware-based implementation can reveal

how to best leverage parallelism when designing protocols.

2) Complicates implementation: A second challenge that

has traditionally faced hardware-based implementations, is the

complexity of carrying out the implementation. Programming

hardware has traditionally required knowledge of operation

at the gate-level, making building large designs a time-

consuming and error-prone process. However, the advent of

modern hardware description languages, and more recently

the capability to “compile” a high level language, such as C,

to an FPGA implementation alleviates the need to implement

designs via low-level mechanisms. Moreover, implementing

a new design no longer requires starting from scratch: just

as software programming allows use of libraries of code,

hardware description languages make reuse of code simple

to do with open interfaces. Open-source implementations

of hardware design libraries are increasingly made publicly

available for commonly-implemented logic [7], [8]. Finally,

the cost of programmable hardware, and hardware simulators,

has dropped low enough for system builders, from students to

commercial programmers, to prototype and experiment with

their designs in realistic environments.

3) Worsens protocol ossification: The difficulty of chang-

ing deployed protocols is one of the roots of many of the

Internet’s problems. This makes it hard to deploy new designs

with advanced features and functionality. It also makes it

difficult to fix problems and bugs in existing protocols.

Implementing protocols in hardware makes this problem

worse. While low-level network protocols such as Ethernet

and 802.11 are relatively fixed and undergo few changes,

and hence are typically implemented in hardware, higher-

layer protocols undergo more innovation and suffer from a

wider array of bugs and vulnerabilities. Changing already-

deployed hardware is an expensive proposition. While ASICs

can operate at high speeds, taping out a design and burning

it into silicon costs millions of dollars. Furthermore, once the

design is deployed, updating hardware traditionally required

physical changes to equipment, further increasing cost.

However, modern semiconductors called field-

programmable gate arrays (FPGAs) can be modified

by a customer after manufacturing. FPGA-based designs

can be remotely updated and patched in the field, just

like software-based systems. FPGAs are flexible enough to

support any logical functions that can be implemented in

traditional silicon. However, field-programmability comes

at a cost—FPGAs have typically been a factor of 10 times

slower than ASIC-based designs. That said, FPGAs are

being increasingly used, even for high-volume applications

traditionally dominated by ASIC designs. This is happening

due to the very high upfront costs of ASIC development,

and lowering R&D resources (and hence capacity for

high-grade quality-assurance to weed out errors prior to

deployment—finding a bug in an ASICs require refabricating

the entire design at the cost of millions of dollars and

remanufacture of all produced components). Moreover, even

though FPGAs are slower than ASICs, they can be orders

of magnitude faster than general-purpose processors due to

the ability to leverage parallelism. Finally, enormous strides

have been made in the area of hardware-software codesign.

For example, the field of configware is concerned with

co-compilation of hardware and software designs across both

an instruction-stream based microprocessor and attached

reconfigurable hardware. While in this paper we consider

the extreme design point of offloading the entire network

protocol into hardware, several of our design’s functional

components may be offloaded into software if desired. We

describe more details of reconfigurable hardware in the next

section.

B. Reconfiguring hardware with FPGAs

An FPGA is a semiconductor device that can be configured

(potentially multiple times) after manufacture. An FPGA

consists of an array of configurable logic blocks connected

together via a programmable interconnect, allowing a user

to program the device with customized hardware designs.

Modern FPGAs come in an array of sizes (supporting varying

complexities of designs), clock speeds and the number of

“pins” that allow communication with external components

such as a commodity processor or memory.

FPGA designs are commonly implemented in a hardware

description language (HDL) such as Verilog or VHDL. The

HDL is then processed by a series of tools into a form that can

be loaded onto an FPGA. Commonly, FPGAs are components

in complex systems. Because of this, they are often coupled

with a general purpose processor. This may be done in several

ways. First, the FPGA may reside on a peripheral bus attached

to the main processor. For example, within a conventional PC,

an FPGA may reside on a network interface card reachable

by the processor over a peripheral bus (e.g.,PCI)[8]. Second,

the FPGA may be used as a co-processor, where an FPGA

is used in a processor socket of a multiprocessor system [9].

Third, the FPGA may be a standalone system, but may run an

embedded processor coded as logic within the FPGA. Finally,

the FPGA can exist with a processor running as a separate

component on the board [10].

Future trends in semiconductors can further extend the

usefulness of FPGAs. Modern FPGAs are increasingly inte-

grated with a wider variety of components on-chip, including

memory, Ethernet MACs, and general purpose processors.

One key bottleneck that limits parallelism in such designs is

bandwidth to off-chip components, as all communication must

take place over a fixed number of pins attaching the FPGA

to the rest of the board. To address this, the use of high-

speed (e.g., multi-gigabit) serial transceivers will free up pins

for additional peripheral devices. Additionally, stacked chip

technology where SRAM memory or other components may

be layered atop and directly connected to the FPGA’s config-

urable logic. Finally, modern FPGAs offer increasing levels of

efficiency for application-specific support, by implementing

common functions (e.g.,the carry chain of an adder) directly

within individual logical units on the chip. In fact, specialized

DSP blocks (e.g.,for performing efficient multiply-accumulate

operations) are appearing on newer FPGAs.

III. OFFLOADING BGP TO HARDWARE

Fig. 1. FPGA-based architecture for BGP.

BGP is a distributed routing protocol that to date has been

implemented exclusively in software. In this section we give

an overview of the architecture of our BGP implementation

in hardware. Our design (Figure 1) is intended to be used

with a TCP offload solution [6], and its structure consists

of three main components: packet parsing and connection

logic to communicate with neighbors, memory management

logic to lookup and maintain the trie data structure, and

policy and decision logic used to decide on which routes

to use and propagate. The figure shows a simplified version

of our architecture that supports a single peering session (in

practice, the parsing component is replicated for each peering

session, with an arbiter component multiplexing their accesses

to memory). We describe the details of these components

below:

Packet parsing and session logic: This component main-

tains BGP sessions to the neighboring router, and parses

BGP updates into a concise representation that is used in-

ternally. It consists of 2 sub-modules: a packet parser and a

connection finite state machine (CFSM). The packet parser

is responsible for parsing incoming packets. For non-update

messages it generates internal events, and for update messages

it generates prefixes and attribute information. The CFSM

module inspects the message type, advances the state machine

as appropriate, and either requests the outgoing message

generator to generate a message if necessary (e.g., if a BGP

Open message is sent requiring a response). In the case of a

received update message, the BGP packet parser extracts path

attributes and prefixes and forwards them to the Trie Lookup

and Attribute Compressor modules. As an optional extension,

we could improve performance by cancelling processing of

earlier updates if later updates to the same prefix arrive, since

the output of a BGP router for a prefix only depends on the

currently advertised state of that prefix.

Memory management: This component maintains two

structures: the routing table (RIB), which contains the set of

currently advertised routes by neighbors, and a trie structure

which contains references to locations in the RIB. The Trie

Manager uses an IP prefix to traverse the trie structure,

resulting in a location in the RIB which contains a set of

received routes for that prefix (one from each neighbor that

advertised a route). In particular, each element of the set

contains a list of attributes, and the interface number of the

neighbor that advertised the route. The RIB writer/scanner

then writes the advertised route to the RIB (or, in the case

of a withdrawal, deletes the route from the RIB) given the

location produced by the Trie Manager and scans the RIB for

other previously advertised routes to the same destination. As

each route is written to or scanned from the RIB, it is sent

to the BGP decision logic component.

Decision logic: This component implements logic to choose

the best route from all advertised routes to the same des-

tination prefix. For each advertised or withdrawn route, the

RIB writer/scanner will send it multiple routes to the same

destination in sequence. Whenever a new route is driven

to the module, it compares the current best route with the

new route and updates the current best route if the new

route is better. The comparison between two routes is done

using the standard BGP decision process (preferring lowest

localpref, then lowest AS Path Length, etc.). When all routes

to the same destination are finished being sent from the RIB

scanner/storer, the best route is output from this module. If the

newly-selected best route differs from the previously-selected

one, the best route is sent to the forwarding table (FIB) in

the data plane (not shown in our figure), and the outgoing

message generator module to advertise the new best route to

neighbors.

Example: To clarify how the components work together, we

trace an example routing update through our design. Suppose

an advertisement for a single prefix with a corresponding set

of attributes arrives (if an update contains multiple prefixes,

this process would be repeated for each prefix). First, the

parser reads in the packet, parses the prefix and attributes,

and forwards them to Trie Lookup and Attribute Compressor

modules. The trie lookup module then looks up the location of

the set of advertised routes to the destination prefix and sends

this to the RIB scanner/storer, which first stores the new route

(given by the Attribute Compressor) to the RIB, then scans

the RIB for additional routes to the same destination prefix.

It then sends the set of routes, including the newly received

route, to the decision logic one by one. The decision logic

maintains the current best route and outputs it when all the

routes have been processed. The new best route is then sent

to the FIB for storage. Similarly, if needed, the best route

is forwarded to the outgoing message generator module to

generate new advertisements.

IV. A HARDWARE-AMENABLE BGP

While our hardware-based BGP implementation offered

improved processing speed over a software-based imple-

mentation, it also had some downsides. Its implementation

consists of a moderate level of complexity, and it continues

to suffer from several bottlenecks – it requires multiple clock

cycles to parse update messages, to traverse the trie for the

locations of routes in the RIB, and to look up current routes

maintained in the RIB. To further improve performance, we

relax our design goals by considering a new question—

is it possible to make BGP more amenable to hardware

offloading, by allowing modifications to the protocol? To

do this, we enumerate the bottlenecks and develop a new

protocol which we term Hardware-Amenable Internet Routing

(HAIR). We aim to design HAIR to reduce complexity of

hardware offloading, to improve performance gains achieved

by hardware offloading, yet also to retain the same semantics

and features as traditional BGP.

A. Challenges of hardware-based BGP implementation

In this section, we enumerate three key design properties

of BGP that complicate offloading to hardware.

No total ordering of routes: When a new route is advertised

in BGP, the BGP router needs to determine if the new

route is better than its current best route. It does this by

scanning over all routes (including the new route) that have

been advertised, and selecting the best one. However, the

Multi-Exit Discriminator (MED) attribute, used to signal to

an immediately-adjacent neighboring AS which ingress link

should be used to send traffic to the local AS, prevents each

router from having a total ordering over all possible candidate

routes [11], and hence advertising a new route requires a

complete scan of all existing routes.

Complex lookup: Routers must maintain a data structure

to look up the set of advertised routes associated with an IP

prefix. This is often done by use of a trie data structure, which

allows lookup of keys of length n in O(n) time. However,

implementing a trie in hardware has some disadvantages.

First, implementing data structures with pointers in hardware

is complex and requires advanced memory management.

Second, a single IP prefix lookup takes a substantial number

of cycles since a traversal for IP prefix visits multiple nodes

of the trie, requiring each step a separate lookup from the

memory in sequential order. While software routers also

suffer from lookup delay, it becomes much more apparent in

hardware where other parts of the design are running much

faster.

Simplify assumptions on transport: The BGP RFC [12]

requires protocol messages to be exchanged using TCP, to

provide resilience to loss and packet reorderings. However,

TCP provides numerous features that complicate its design

and hence increase complexity of hardware implementation:

for example it performs congestion control, requires de-

encapsulation and segmentation logic, and must remain back-

ward compatible with existing implementations. Since BGP

itself does not strictly require these features, to simplify

offloading, we eliminate TCP and instead use a lightweight

procedure that directly acknowledges HAIR messages.

Long and variable-length attribute strings: BGP update

messages have dependencies between fields which can intro-

duce complexity in update processing. Each update message

contains a list of unfeasible (withdrawn) prefixes followed

by a list of reachable (advertised) prefixes, and a set of

attributes. Each of these fields is variable length, may consist

of multiple-subfields which in turn can appear at arbitrary po-

sitions within the packet (and some of which are optional and

need not appear at all). For instance, path attributes section

includes a list of attributes and each attribute is in the form

of <attribute type, attribute length, attribute value> triple.

The size of the attribute value field is variable and depends

on the attribute length field. Variable length, dependent fields

clearly limit the performance since these fields must be parsed

in sequential order and the hardware implementation cannot

take advantage of its parallel processing capabilities.

Moreover, BGP messages provide for high levels of ex-

pressiveness and flexibility by providing extensible attributes.

Some examples are community attributes, in which operators

may write arbitrary strings, and control operation based on

these strings, and AS-Paths, which provide a list of ASes

along the path to the destination. While these extensible

fields allow expressiveness, they present two problems: their

contents are highly redundant (the same field is often sent

multiple times in different update messages to the same peer)

and the fields themselves are overly verbose (the information

within the field can be expressed in a more compact form).

This results in wasted bandwidth, which limits the rate at

which update messages can be processed.

B. Hardware-amenable protocol overview

In this section, we redesign BGP to make it amenable to

hardware offloading. To do this, we propose a new protocol

(HAIR), which addresses the three complexities discussed in

the previous section:

Optional total ordering: In BGP, a total ordering of

routes is not possible. Because of this, to determine the best

route, each currently advertised route must be considered.

This requires a complete scan of all advertised routes for a

prefix, increasing processing time. To address this, our design

provides a configurable flag to enforce a total ordering across

routes. A network operator may enable this flag to achieve

faster processing, yet still enable typical uses of MED.

Simplify lookup: The processes to lookup the set of cur-

rently advertised routes associated with an IP routers requires

traversing a data structure. The data structure itself requires

advanced memory management and the lookup process takes

several cycles and several memory accesses. To address this,

instead of propagating IPv4 routes, HAIR operates in a virtual

address space where each destination network is enumerated

with a fixed identifier. Here, we assume that each host on the

Internet has an address in the form of (virtual supernet ID,

virtual subnet ID). HAIR-speaking routers propagate routes

to supernets, and HAIR border routers use an IGP to reach

hosts internal to its attached subnets. This addressing scheme

has the advantage that our hardware implementation uses the

virtual supernet ID to directly index into memory for relevant

routing information, without need to traverse a trie. This is

possible because there would not need to be a longest prefix

match and the number of unique virtual supernet IDs would

be small enough to allow the routing table to be directly

addressed by these IDs and still be small enough to fit in

a moderately sized memory. Hence, the lookup can be done

in constant time since there is no need of a search or traversal

for the information. Moreover, this reduces complexity of the

hardware design. While changing the Internet’s addressing

structure would require substantial work to deploy, several

next-generation routing techniques propose routing on fixed

network identifiers rather than prefixes (including AIP [13],

HLP [14]), and our virtual address space can be directly

translated to AIP or HLP’s network identifiers. If changing

Internet addressing is not desirable, virtual supernet IDs may

be translated to IPv4 prefixes. This is done through use of an

auxiliary protocol that propagates this mapping, and having

routers store this mapping in a local table (in a manner similar

to HLP’s AS-to-prefix mapping protocol [14]).

Fixed-length, independent fields: The fields in a BGP

update are of variable length, which limits performance since

these fields must be parsed in sequential order and the

hardware implementation cannot take advantage of its par-

allel processing capabilities. Additionally, the overly verbose

encodings used in BGP are wasteful, in that less-redundant

more-compact encodings may be read and processed in fewer

cycles. To address these inefficiencies, we modify BGP to

replace variable-length fields with fixed-size labels. A fixed

length attribute may be used to replace a variable-length

field when a fixed, finite set of values are used for the

field assignment. If variable-length attributes are desired, our

design supports them by allowing adjacent routers to run a

protocol that periodically propagates mappings from variable-

length attributes to fixed length labels. Finally, labels are set

within the packet in fixed well-known locations, and in a fixed

well-known order, to simplify processing.

However, using fixed-length labels introduces some new

challenges: some information in the update messages is

variable length by its nature (e.g., the AS Path attribute), some

attributes in update messages are optional and may appear

as desired (e.g., community attributes), and update messages

contain a substantial number of dependencies across different

fields. We address these in the following section.

C. Protocol details: using labels

To deal with the challenges of using fixed-length labels, we

decouple label assignment from routing updates. The resulting

protocol consists of three steps. First, a unique fixed-size

label is generated for each unique set of values of a set of

variable length fields. Second, the label and the corresponding

values of the set of variable length fields are advertised to

the receiver. Finally, the label can be used in the following

update messages instead of variable length fields. The main

observation of this scheme is that variable length fields have

to be processed only once, but the corresponding fixed size

label is used multiple times in different update messages.

In order to maximize the reusability of the labels, for a

given set of attributes we have decided to use two labels: AS

Path Label to represent the AS path attribute and Attribute Set

Label to represent the remaining attributes. The main intuition

behind this separation is that attributes except the AS path

define a local policy between peers and the same policies

are used over and over again in multiple update messages,

whereas AS Path is only used in loop detection and best route

decision process. Hence, the new protocol defines two new

message types for advertising AS Path Labels and Attribute

Set Labels. AS Path Label messages are used to advertise

AS Path Labels and the corresponding AS Path to a HAIR-

speaking router. Similarly, Attribute Set Label messages are

used to advertise a label for the remaining set of attributes.

The overall protocol has three key steps:

Computing labels at edge routers: Here we describe how

edge routers must redistribute from IPv4 routes received from

BGP to HAIR (IP routes received from an IGP are handled

in a similar manner). Upon receiving a BGP update message

with a new AS Path, the edge router first selects an unused

label from the list of free labels. Second, the router creates a

two-way mapping between the AS Path and the corresponding

label in its internal tables. Third, the edge router sends out AS

Path Label advertisement messages to its HAIR neighbors.

Finally, the edge router sends out HAIR update messages

including that AS Path Label. Redistribution from HAIR to

BGP is performed in a similar fashion. Upon receiving a

HAIR update message, the edge router replaces all labels

with the corresponding variable length fields and sends out

BGP update messages if needed. However, when a HAIR AS

Path Label advertisement message is received, the edge router

simply creates a two-way mapping between the AS Path and

the corresponding AS Path Label.

Computing labels at internal routers: Routers within a

HAIR network propagate advertisements with labels. To avoid

fragmentation of the label space, labels only have local

meaning between routers, and label swapping [15] is used

to translate labels across routers. In more detail: routers

receive Label advertisement messages (which propagate label

to attribute mappings) or Update messages (which propagate

route changes with attributes represented as labels). Once

an AS Path Label advertisement message is received, the

internal router first creates a one-way mapping from AS Path

Label (i.e. inbound label) to AS Path in its internal tables. In

addition, the router selects one unused label and sends out AS

Path Label messages to its neighbors including the selected

label (i.e. outbound label) and the corresponding updated AS

Path. Finally, the internal neighbor creates one-way mappings

from the inbound AS Path Label to outbound AS Path Labels.

Upon receiving a HAIR Update message, the internal router

replaces all inbound labels with the corresponding outbound

labels for each neighbor and sends out updated HAIR Update

messages if the best route information is updated.

Up to this point, we have assumed backward-compatibility

with traditional BGP. However, the network operator may

instead directly assign policies in terms of the fixed-size

labels used in our protocol. Alternatively, labels may also

be computed by an RCP, which can directly write these label

mappings into routers. In order to do that, the edge routers

directly sends HAIR Label Advertisement messages to the

RCP instead of internal routers, and then the RCP computes

the label mappings and writes those into the internal routers.

D. Design

In this section we briefly give an overview of the HAIR

architecture. Our HAIR design (Figure 2) consists of three

components: packet parsing and session logic, memory man-

Fig. 2. FPGA-based architecture for hardware-amenable BGP (HAIR).

agement logic, and the BGP decision logic. Messages ex-

changed by HAIR contain labels in place of variable-length

fields. To perform this function, the memory management

logic maintains label tables. We maintain two separate label

tables, one for AS Paths and one for Attribute sets. When an

update message is received, the AS Path and other attributes

are extracted by the parser. Next, these inbound labels are

converted to outbound labels via a label-swapping step, in

which a lookup is performed by label table managers. Then,

the RIB manager receives these outbound labels and updates

the RIB and sends out update messages including the out-

bound labels if needed.

E. Deployment considerations of HAIR

Supporting standard routing policies: Most BGP policies

can be described as performing an ordered ranking over the

set of advertised routes. To increase processing speed of

our design further, we can embed this ranking information

within assigned labels. For example, the label itself may

correspond to its placement within the ranking of routes, and

route selection then simply becomes a matter of performing

a numeric comparison to determine the lowest-labeled route.

While enumerating routes in this fashion presents challenges,

this process is simplified by having an RCP [16] compute an

enumeration over the set of historically visible routes, apply-

ing a ranking, and installing label maps into routers. Then,

only newly visible routes that were not assigned rankings

need to undergo the full decision process. From parsing BGP

updates, we found these historical rankings to be quite stable,

with less than 1 percent of routes in a week not appearing

within the previous weeks’ advertisements.

Interoperating with standard BGP: Another downside of

HAIR is that, unlike the design given in Section III, it cannot

directly peer with existing BGP routers. This complicates

incremental deployment, especially since our design may only

ever be deployed on certain routers or regions of the network

where cost concerns or processing requirements are the high-

est. However, translation between routing protocols has been a

widely-studied problem in the context of traditional protocols,

through techniques known as redistribution. Here, routes from

one protocol are re-advertised into another protocol. HAIR

routes can be simply redistributed into standard BGP and

vice versa since they use the same addressing structures

and protocol formats. The main challenge is in converting

protocol messages, which requires translation from labels to

BGP update contents, and vice versa. Finally, our design is

amenable to other deployment strategies, like tunneling (e.g.,

forwarding updates through GRE tunnels over domains that

do not support HAIR), and dual-stack (e.g., routers maintain

processing engines for both HAIR and traditional BGP, and

demultiplex message to the appropriate engine based on the

version number in the update header).

V. EVALUATION

Methodology: To understand the performance properties of

our design, we implemented a prototype and replayed BGP

update traces against it. We then measured processing time,

the amount of time required to process a routing update,

and throughput, the number of routing updates processed

per given unit of time (note that processing time is not

the inverse of throughput, since our design is pipelined,

where multiple updates are processed at different stages

at the same time). To evaluate our design, we conducted

two kinds of experiments. First, we performed black-box

measurements, where we simulated loading our design onto

a NetFPGA board [8], and monitored the time from when

updates arrived at the inputs to when the resulting best route

was advertised at the output (using the methodology given

in [17]). Second, we performed microbenchmarks, where

we instrumented our design with counters to determine (for

each update) the amount of time it spent in each module of

our design. To collect these results, we ran our design on

the ModelSim FPGA simulation environment. To evaluate

performance under realistic workloads, we replayed Route

Views traces [18] against our design. We did this by randomly

selecting four vantage points to act as neighbors to our router.

We replayed traces collected during October 2008, removing

all time between updates such that all the updates arrived at

the router simultaneously. To eliminate cold-start effects, we

preload routing tables before replaying updates. In addition

to evaluating our BGP and HAIR FPGA-based designs, for

comparison purposes we also collect black-box results for

the Quagga open-source software router. Overall, our design

consists of 5239 lines of Verilog code.

Throughput and processing delay: Here we measure the

throughput (update processing rate) and per-update processing

delay of our design. It is important for protocol designs

to have high throughput and low processing delay, as this

allows them to handle sudden bursts of updates, to accelerate

the convergence process, and to reduce cost of hardware

(allowing cheaper and lower clock cycle components). We

measure throughput as the number of updates that are pro-

cessed within a single cycle. We compare FPGA-BGP (our

design of the standard BGP protocol, running on an FPGA),

HAIR (our hardware-amenable routing protocol), against SW-

BGP (the Quagga [19] open-source software router, running

on a single core on a 3GHz Intel Core2 Duo processor).

Comparing our design against Quagga introduces two key

challenges. First, Quagga contains timers which reduce up-

date throughput at the expense of slowed convergence. To

address this, we optimized Quagga to immediately pass-

through updates, by disabling timers (SW-BGP-opt), thereby

improving its throughput. Second, it is misleading to directly

compare cycles, since commercial CPUs scale to multiple

GHz (billions of cycles per second) while FPGAs scale

only to hundreds of MHz. To address this we also plot a

normalized line showing the performance of Quagga if it

were sped up by the factor difference in clock speed between

the NetFPGA (125MHz) and the 3GHz processor. These two

changes improve Quagga’s performance results, to provide

a more fair comparison. Figure 3 shows throughput (update

processing rate) and Figure 4 shows processing delay.

 0

 0.2

 0.4

 0.6

 0.8

 1

1e-09 1e-07 1e-05 1e-03 0.1 1

F
ra

c
ti
o

n

Throughput [updates/cycle]

SW-BGP
SW-BGP-opt

SW-BGP-opt-norm

FPGA-BGP
HAIR

Fig. 3. Performance Results: Update processing rate.

Overall, we find that offloading BGP to hardware provides

more than an order of magnitude improvement in throughput

over the Quagga software router, and our HAIR implemen-

tation improves upon this by another order of magnitude.

Similarly, offloading BGP improves per-packet processing

delay, and a HAIR implementation reduces delay further. In

addition, we found that our FPGA-BGP design reduced delay

variability by over an order of magnitude, and HAIR com-

pletely eliminates variability by attaining a fixed processing

delay across all updates.

To localize the bottlenecks, we instrumented our design

with counters (Figure 5) to measure the amount of time

 0

 0.2

 0.4

 0.6

 0.8

 1

10 1e+03 1e+05 1e+07 1e+09

F
ra

c
ti
o

n

Processing delay [cycles]

HAIR
FPGA-BGP

SW-BGP-opt-norm

SW-BGP-opt
SW-BGP

Fig. 4. Performance Results: Per-update processing time.

updates spent in each component. For FPGA-BGP, we found

that the memory management component that manages the

trie data structure was the greatest source of delay, with

the parser, which deals with variable-length fields, close

behind. We found that HAIR attains its performance gains

by mitigating bottlenecks in all three components.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

F
ra

c
ti
o

n

Processing time [cycles]

HAIR-parser
HAIR-label mapping
HAIR-decision logic

FPGA-BGP-dec. logic
FPGA-BGP-parser

FPGA-BGP-trie lookup

Fig. 5. Performance Results: Microbenchmarks.

Sensitivity to workload changes: To evaluate whether

our results held across a variety of workloads, we replayed

different update traces against our design. First, we varied the

year in which the trace was collected, by replaying a trace

of the same length from April 2001, 2004, and 2008. We

found a slight increase in processing delay in traces from

later years in FPGA-BGP due to an increased trie size (we

observed a negligible increase in SW-BGP, as this effect was

masked by the magnitude of processing delay). We found that

HAIR underwent no increase in processing delay, as the trie

was replaced by a constant-time lookup. Next, we varied the

number of neighbors (peers) attached to the router (Figures 6

and 7). We found that all designs undergo some decrease in

performance with more neighbors, due to the larger number

of routes being processed. However, in the hardware-based

versions this effect is small, incurring for example only 1

additional cycle per neighbor in HAIR per withdrawal (and

zero additional cycles per advertisement).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.001 0.01 0.1 1

F
ra

c
ti
o
n

Throughput [updates/cycle]

n=2,FPGA-BGP
n=4,FPGA-BGP
n=6,FPGA-BGP

n=2,HAIR
n=4,HAIR

Fig. 6. Sensitivity to workload: Effect of varying number of neighbors on
throughput.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

F
ra

c
ti
o
n

End to end delay [cycles]

n=2,HAIR
n=4,HAIR

n=2,FPGA-BGP

n=4,FPGA-BGP
n=6,FPGA-BGP

Fig. 7. Sensitivity to workload: Effect of varying number of neighbors on
delay.

Properties of workload: Understanding the fundamental

level of parallelism achievable in a protocol is important,

as hardware-based technologies such as multicore enable the

ability to perform multiple computations at the same time. To

evaluate this, we analyzed update traces and computed the

number of updates that could be processed simultaneously,

where two updates can not be simultaneously processed if

they read/write the same prefix (Figure 8).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

F
ra

c
ti
o
n

Parallelism [simultaneous updates]

2003 2005 2007

Fig. 8. Properties of workload: Level of parallelism in update traces.

Interestingly, we found that when “spikes” of updates

were received at the router, parallelizability increased a large

amount. This is shown by the long tail in Figure 8, which

extends far beyond the right side of the plot shown. In this

case, the 50th percentile is less than 10, but the average over

the entire trace is 217. This is important as processing speed

is most crucial to avoid worsening convergence during times

of elevated load, which happen because link failures cause

large numbers of prefixes to be simultaneously withdrawn

or advertised, but do not typically trigger multiple updates

to the same prefix. While the design presented in this paper

performs parallel processing across updates only to the extent

of its pipeline, we can leverage the high degree of parallelism

present in BGP data by replicating our design within a single

FPGA, and balancing updates across the replicas.

Finally, our design allows for an RCP-like system [16]

to compute label assignments to routers, to further improve

performance. To evaluate feasibility of this approach, we

study workloads to capture the number of label changes

that occur over time, which corresponds to the number of

times the RCP would need to refresh label mapping tables

within routers. We find that over a 10 day trace, out of 3.2

million updates, only 85,895 unique label mappings need to

be published.

VI. RELATED WORK

The question of where the boundary should be between

software and hardware has been a long-standing and widely-

investigated question in the field of computer science. The

field of hardware-software codesign focuses on generating

designs for systems that are composed of both a microproces-

sor and a hardware-based logic circuit [20]. Co-compilation

techniques are used to automatically transform a high-level

language into software modules running atop the processor

with the rest compiled into logic circuits [21]. While vast

advances have been made in this area, additional gains

are often attained by leveraging domain-specific information

and techniques. We believe our work is complementary to

codesign, by considering a simplified version of this problem

specifically within the context of networking protocols.

Within the realm of network protocols, hardware offloading

may reduce computational costs and speed throughput. First,

hardware offloading for TCP is argued to be useful to reduce

data copy costs in systems where the host bus is the main bot-

tleneck [6]. Several vendors are beginning to provide network

equipment to support TCP offloading, including Broadcom,

Chelsio, and Neterion. Second, hardware technologies are

commonly used for monitoring workloads. Hardware-based

counters are used for monitoring aggregate statistics of data

traffic [22], and characterizing anomalies. Third, a variety of

protocols at lower layers of the protocol stack are imple-

mented directly in hardware or firmware, such as MAC and

physical-layer protocols. This is done to improve processing

speed, to reduce reaction time to outages, and to reduce

component cost. There has also been work on offloading

web server traffic [23] and spam email processing [24] to

FPGAs. However, there has not been widespread investigation

of offloading routing protocols into hardware. While tradition-

ally there was little need to do so, the ever-increasing scale

and churn of networks coupled with rising demands of new

applications may require consideration of new architectures.

In this work we characterize the implementation of a routing

protocol (BGP) in hardware and propose protocol changes to

simplify offloading.

Performance of network protocols may also be improved

by other means. Computation time of processing may be

reduced by using more efficient algorithms and caching

results of previous computations. Networks may reduce timers

and exchange messages at higher rates to improve conver-

gence time and keep state more up to date [25]. System-

wide bottlenecks may be reduced by increasing bandwidth

between devices, incorporating more powerful hardware, or

configuring the system to reduce unnecessary processing and

eliminate bottlenecks. Router load can be decreased by giving

certain updates higher priority processing [26]. Techniques

such as metarouting [27] reduce likelihood of implementation

errors by mapping high-level descriptions to code, and may

be extensible to hardware implementation. We believe these

works are synergistic with hardware offloading, and may

be used in concert with the techniques proposed in our

work. Moreover, in addition to performance benefits, we

believe that new developments, such as the increasing perva-

siveness of multicore technologies [28], graphics processing

technologies [5], and resource constrained network elements

demonstrate the need for greater awareness of hardware issues

when designing network protocols.

VII. CONCLUSIONS

In this paper we challenge the conventional wisdom that

higher-level protocols such as BGP should be designed for

a software-only implementation. We start by designing

a circuit that executes BGP directly in hardware. While

this design leads to significant performance improvements,

hardware implementation is not considered when designing

network protocols like BGP. This limits achievable benefits

and complicates implementation. Given the ever-increasing

loads on routers, we believe future routing protocols should

be developed with hardware in mind. As a first step in this

direction, we redesigned and implemented a replacement for

BGP that simplifies design and offers further performance

improvements.

However, our work is only one early step towards de-

veloping more hardware amenable network protocols. In

future work, we plan to investigate application of co-

compilation [21] to determine which parts of BGP compu-

tation attain most gains from offloading. It may also be inter-

esting to evaluate a wider array of networking protocols (e.g.,

storage/filesystem protocols, spam/email and other application

services), and to investigate commonalities as a step towards

developing a set of shared primitives to simplify hardware

offloading.

REFERENCES

[1] T. Li, “Router scalability and Moore’s law,” in Internet Architecture

Board meeting (presentation), October 2006, http://www.iab.org/about/
workshops/routingandaddressing/Router Scalability.pdf.

[2] Z. Mao, R. Govindan, G. Varghese, and R. Katz, “Route flap damping
exacerbates Internet routing convergence,” in Proc. ACM SIGCOMM,
August 2002.

[3] “Bluespec, Inc.” http://www.bluespec.com.
[4] “Synfora, Inc.” http://www.synfora.com/.
[5] S. Tomov, M. McGuigan, R. Bennett, G. Smith, and J. Spiletic,

“Benchmarking and implementation of probability-based simulations
on programmable graphics cards,” Computers & Graphics Journal,
2005.

[6] J. Mogul, “Tcp offload is a dumb idea whose time has come,” Proc.

HotOS, May 2003.
[7] “OpenCores,” opencores.org.
[8] J. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,

R. Raghuraman, and J. Luo, “NetFPGA - an open platform for gigabit-
rate network switching and routing,” IEEE Microelectronic Systems

Education, December 2007, netfpga.org.
[9] “DRC Computer Corp.” drccomputer.com.
[10] “Virtex-5 FXT FPGA ML507 Evaluation Platform,” xilinx.com/

products/devkits/HW-V5-ML507-UNI-G.htm.
[11] N. Feamster and J. Rexford, “Network-wide prediction of BGP routes,”

in IEEE/ACM Trans. Networking, April 2007.
[12] Y. Rekhter and T. Li, “A Border Gateway Protocol,” RFC 1771, March

1995.
[13] D. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,

and S. Shenker, “Accountable Internet Protocol (AIP),” in Proc. ACM

SIGCOMM, August 2008.
[14] L. Subramanian, M. Caesar, C.-T. Ee, M. Handley, M. Mao, S. Shenker,

and I. Stoica, “HLP: A next-generation interdomain routing protocol,”
in Proc. ACM SIGCOMM, August 2005.

[15] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switch-
ing Architecture,” January 2001.

[16] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
K. van der Merwe, “Design and implementation of a routing control
platform,” in Proc. NSDI, April 2005.

[17] A. Feldmann, H. Kong, O. Maennel, and A. Tudor, “Measuring BGP
pass-through times,” Proc. Passive and Active Measurement, April
2004.

[18] “University of Oregon Route Views,” archive.routeviews.org.
[19] “Quagga software routing suite,” http://www.quagga.net.
[20] W. Wolf, “Hardware-software co-design of embedded systems,” Proc.

of the IEEE, July 1994.
[21] M. Baleani, F. Gennari, Y. Jiang, Y. Patel, R. Brayton, and

A. Sangiovanni-Vincentelli, “HW/SW partitioning and code generation
of embedded control applications on a reconfigurable architecture
platform,” International Workshop on Hardware/Software Codesign,
May 2002.

[22] Q. Zhao, J. Xu, and Z. Liu, “Design of a novel statistics counter
architecture with optimal space and time efficiency,” Proc. ACM SIG-

METRICS, June 2006.
[23] T. Sproull, G. Brebner, and C. Neely, “Mutable codesign for embedded

protocol processing,” International Conference on Field Programmable

Logic and Applications, August 2005.
[24] E. Gawish, M. W. El-Kharashi, M. A. El-Yazeed, and A. Salama,

“Design and FPGA-implementation of a flexible text search-based
spam-stopping firewall,” National Radio Science Conference, March
2006.

[25] C. Alaettinoglu, V. Jacobson, and H. Yu, “Towards millisecond IGP
convergence,” in IETF Draft, November 2000.

[26] W. Sun, Z. M. Mao, and K. G. Shin, “Differentiated bgp update
processing for improved routing convergence,” Proc. International

Conference on Network Protocols, October 2005.
[27] T. Griffin and J. Sobrinho, “Metarouting,” Proc. ACM SIGCOMM,

August 2005.
[28] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Kuetzer,

D. Patterson, W. Plishker, J. Shalf, S. Williams, and K. Yelick, “The
landscape of parallel computing research: A view from berkeley,”
Technical Report, UCB/EECS-2006-183, December 2006.

