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ABSTRACT
Virtualization enables multiple networks, each customized
for a particular purpose, to run concurrently over a shared
substrate. One such model for managing these virtual net-
works is to create a hosting platform where companies can
deploy services by leasing a portion of several physical routers.
While lowering the barrier for innovation in the network, this
model introduces new security concerns. In this paper we
examine the issue of accountability in this setting of hosted
virtual networks. That is, how a service provider can know
its software is running without modification and that the in-
frastructure provider’s physical router is forwarding packets
as instructed with the quality of service promised. Rather
than presenting a single specification of what every router
on the Internet must look like, in this paper we examine two
possible approaches: one that detects violations by monitor-
ing the service and one that prevents violations from occur-
ring in the first place. For each, we provide a description of
an architecture that can be achieved with technology avail-
able today, the limitations of that architecture, and then
propose an extension which overcomes the limitations.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network
Architecture and Design; C.2.6 [Computer Communica-
tion Networks]: Internetworking

General Terms
Design, Security, Measurement, Performance

Keywords
Virtualization, router architecture, security, accountability

1. INTRODUCTION
There have been many proposals addressing the many

challenges facing the Internet, yet it has proven extremely
difficult to deploy the solutions in the form of modified proto-
cols or new services. Virtualization has the promise of break-
ing this stalemate by providing a means to concurrently run
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multiple virtual networks, each customized for a particular
use, on a shared physical infrastructure. This promise is
becoming a reality as major router vendors are starting to
support both router virtualization (running multiple virtual
routers in parallel on a single router) [17] and router pro-
grammability (running customized protocols) [16] [6].

We argue that the future will bring about hosted virtual
networks [12] [26], a model analogous to hosted cloud com-
puting services, such as Amazon’s EC2 [1]. In this model,
the infrastructure provider deploys and manages a set of
physical routers and the links between them, and forms busi-
ness relationships with other infrastructure providers to en-
sure global connectivity. The service provider then leases
virtual routers from one or more infrastructure providers
to create a virtual network running its own custom control
processes on each virtual router. It is this decoupling be-
tween infrastructure and service provider that would enable
service providers to deploy a customized network or new ser-
vice without needing to build an expensive infrastructure.

However, this model of hosted virtual networks raises a
new class of security concerns. In this paper, we are partic-
ularly concerned with accountability. We define accountabil-
ity for hosted virtual networks as the provision of services by
an infrastructure provider to service providers as promised
in the Service Level Agreement (SLA), and the provision of
mechanisms to detect and record violations or ensure com-
pliance. Here, we must be able to distinguish a bug in the
service provider’s own software from a violation in the ser-
vice level agreement (SLA) by the infrastructure provider.
Any deviation from the SLA in any way is considered a
violation by the infrastructure provider. This includes (i)
not running the service provider’s control software exactly
as provided, (ii) not forwarding or filtering packets as in-
structed by the control software, and (iii) not forwarding
packets with the appropriate quality of service.

Complicating the matter are two issues: that the platform
is hosted and that the platform is shared. Since the platform
is hosted, the service provider has limited visibility into the
actual operation of the physical router, making it difficult
to assign proper blame. Since the platform is shared, there
is more opportunity for attackers to attack the system. An
attacker (which may be a competing service provider) can
lease its own virtual router and intentionally attack the sys-
tem, either to hurt the competition or just to be malicious.

While one might look to hosted cloud computing for so-
lutions, given its tremendous recent growth, the issue of ac-
countability has received relatively little attention in that
field. This may be due to (i) the fact that the leaders in this
space are considered highly reputable companies with those



running services on it implicitly trusting the hosting com-
pany, and (ii) critical IT infrastructure has yet to migrate
to these cloud services so the issue has not been pushed to
the forefront. However, we feel that the issue cannot be ig-
nored for hosted virtual networks. A service provider will
often need to use multiple infrastructure providers to achieve
global reach, leading them to place trust in a lot of different
(competing) parties. In fact, in some regions, there may be
little competition between infrastructure providers, forcing
the service provider to use one that is less than reputable.

In this paper, rather than proposing a single specification
of a router that would “solve” this problem, we instead take
a first step that explores the solution space by discussing two
approaches that can be taken. For each approach we present
an architecture that can be built by adapting technology
that is currently available and then propose an extension
that overcomes the limitations of that architecture in the
setting of hosted virtual networks.

The first approach is to detect violations by observing the
behavior of the virtual network and then checking against
the expected behavior. Here, using traditional network mea-
surement techniques, the service provider will monitor its
service and gather enough evidence to convince the infras-
tructure provider of the violation. The second approach
builds upon recent advances in trusted computing and pro-
cessor architecture to enable the infrastructure provider to
build in mechanisms that prevent any violations from oc-
curring in the first place by ensuring that the software is
resistant to tampering. This effectively preempts the need
to prove innocence.

The paper is organized as follows. In Section 2 we discuss
some of the unique characteristics of hosted virtual networks
and the challenges and opportunities that come with them.
In Section 3, we present our threat model and discuss the
assumptions made. We then discuss the proposed solutions
by addressing the two possible approaches: using network
observation to detect faults (Section 4) and providing mech-
anisms that prevent the software from being tampered with
(Section 5). We then wrap up with a discussion (Section 6)
and conclusions (Section 7).

2. CHALLENGES AND OPPORTUNITIES
There are many unique properties of routing in hosted vir-

tual network when compared to general-purpose computing
or to more traditional routing. In this section we exam-
ine the unique challenges and opportunities associated with
these properties.

2.1 Challenges
The nature of routing and the specific setting of hosted

virtual networks makes it difficult to apply general purpose
trusted computing techniques directly. Here we look at a
few of these challenges.

Forwarding at high data rates: Perhaps the greatest
challenge is that forwarding in routers requires high data
rates. Network interfaces of 10Gbps are becoming common
and 40Gbps are present in high-end routers. Routers will
have many of these interfaces. This, coupled with the de-
sire for low latency, means any mechanism to ensure correct
packet handling must not add much overhead.

Shared packet handling: For software-based routers,
studies have shown that performing forwarding inside of
a virtual machine [10] or using a mechanism to “sandbox”

the code in the kernel [25] incurs a significant performance
penalty. Therefore, achieving high performance requires
that packet handling must be executed in a shared kernel.
However, allowing a service provider to run custom software
(e.g., to perform monitoring) in privileged kernel mode poses
many risks. For hardware-based routers, little work has been
done to safely enable running custom code on a network pro-
cessor or inserting a custom circuit on an FPGA. While this
is an open area of research, we proceed under the assump-
tion that the service provide will not be able to implement
custom functionality in the shared data plane.

Highly configurable packet handling: In addition to
setting the entries in the forwarding table, a router can be
configured by the network operator to block traffic, provide
different quality-of-service levels, and balance load across
multiple links. There is not a single table or small block of
code that, if guaranteed correct, would guarantee the correct
operation of the router.

Limited infrastructure provider competition: A phys-
ical network requires physical resources (routers and fiber
connecting them) that are spread out over a large area. This
is labor and capital intensive and likely means there will be a
limited number of infrastructure providers in a given region.
This means service providers may have to use an infrastruc-
ture provider they may not trust.

Multiple infrastructure providers: As a physical net-
work is spread over a large area, it is unlikely that a single
physical infrastructure provider will be able to provide global
end-to-end reach. This is unlike cloud computing where one
can go with a single company that has a great reputation for
the entire infrastructure. Ignoring accountability in hosted
virtual networks would mean that a service provider would
have to trust a lot of (competing) parties.

2.2 Opportunities
Just as there are challenges imposed by the shared and

hosted network platform, there are also several unique op-
portunities as compared to general computing.

Multiple infrastructure providers: While listed as a
challenge as well, having multiple infrastructure providers
may also present an opportunity. As the infrastructure provi-
ders will likely have different platforms, a vulnerability in
one may not be present in the other, reducing the likelihood
of an entire network of virtual routers being compromised.

Control messages exchanged between routers: Since
control messages are exchanged between routers, this opens
up the possibility that one router can be used to check the
correctness of the other, similar to [29]. In the absence of
collusion between infrastructure providers, we can take ad-
vantage of the fact that a service provider will have virtual
routers placed in separate infrastructure providers to enable
the virtual routers to perform checking of each other.

Simple and well-defined interfaces: There is a clean
separation of functionality between the control plane, which
runs routing processes, and the data plane, which handles
each packet. The configuration of the data plane from the
control plane follows a simple and well-defined interface spec-
ifying such things as forwarding table entries. Because of
this, the interaction between the virtualization layer and
the virtual routers can be minimized to just this interface
— making it more difficult for the system to be compromised
by an attacker.



Volume of control plane traffic is limited: Control
messages are sent in fairly low volumes. As such, con-
trol messages can be logged as part of the accountability
process (e.g., gathering evidence), allowing approaches that
perform checks after the fact in addition to the more strict
approaches that prevent attacks. Additionally, routing al-
gorithms commonly only base the computation on the set of
routes currently advertised by neighbors. This can further
trim the storage requirements in logging.

Independence between data packets: Just as control
messages can be logged to support checking the correctness
of operation, the data traffic may need to be logged as well —
which is impractical given the high volume. However, since
each packet is forwarded independently in routers, sampling
and summary statistics can be used instead.

3. THREATS AND TRUST
The goal is to provide an architecture where a service

provider can know its software is running as written and
that the physical router is processing packets as instructed
with the promised quality of service. Before discussing how
such assurances can be achieved, in this section we discuss
our assumptions and threat model.

Our assumed generic router architecture is shown in Fig-
ure 1. Each of the physical routers is partitioned into mul-
tiple virtual routers (one for each service provider) with the
virtualization managed by a virtualization layer (controlled
by the infrastructure provider). We simply use the generic
term “virtualization layer” to cover the various technologies
in use by routers today: full or para-virtualization with Vy-
atta’s virtualized router [28], kernel-based virtual machines
for providing software based redundancy in the Cisco ASR
1000 [5], or container based virtualization for providing a
lightweight mechanism for integrating custom network ser-
vices on Cisco’s Integrated Service Routers [6]. Note that
routers can be either hardware based or software based. In
a hardware-based router, the packet handling is done in line
cards (provided by router vendors) connected via a switching
fabric. In contrast, in a software-based router, the packet
handling is done in software. The interfaces are network
interface cards (NICs) connected to main memory via a pe-
ripheral bus such as PCIe. In either the hardware case or
the software case, the forwarding functionality is configured
through an API that is exposed to the virtual router’s con-
trol processes. This configuration goes through the virtual-
ization layer managed by the infrastructure provider.

Figure 1: Generic router architecture showing two
virtual routers and two network interfaces.

From this we can see each of the parties involved, giving
better understanding of the possible security concerns. As
different parts of the virtualization systems are controlled by

different business entities, they each have different motiva-
tions, and therefore may not trust each other. In our threat
model we assume there is mutual distrust between the in-
frastructure provider and service provider. We also assume
that a 3rd party router or component (e.g., processor or net-
work card) vendor is neutral and not colluding with either
party. Furthermore, the system is complex, consisting of
many different components, and thus these components can
be attacked.

We make two assumptions about the capabilities of an at-
tacker. First, we assume that any software on a general pur-
pose processor can be compromised, including the virtual-
ization layer. Attacks on the software can come from at least
three possible sources. (i) A service provider: Because it is
a shared platform, there is extra opportunity for a malicious
party to attack the system. An attacker can lease resources
on a router and run software to attempt to exploit any se-
curity vulnerabilities of the router’s virtualization layer. (ii)
A dishonest infrastructure provider: As we do not assume
an honest infrastructure provider, we cannot trust that the
underlying virtualization layer has not been modified by the
infrastructure provider. While it would seem that the risk
of a bad reputation would prevent a company from inten-
tionally delivering a lower service level than promised, it is
not unheard of [11]. (iii) A rouge employee: In addition to
intentional modification for financial gains by the infrastruc-
ture provider, a rouge employee also has access to the router
and can be paid to attack the system.

Second, we assume the functionality on the NIC or line
card is not modifiable by the infrastructure provider. These
cards contain custom ASICs, FPGAs, or network processors
(often developed in house by the router vendor). FPGAs
already have the ability to boot from a configuration that is
stored in a non-volatile storage device (e.g., CompactFlash)
in encrypted form. The router vendor programs the decryp-
tion key, which is stored internal to the FPGA. It would be a
simple extension to support this functionality in the ASICs
or network processors for any firmware they need.

4. DETECTING VIOLATIONS WITH NET-
WORK MEASUREMENT

In this section we apply traditional network measurement
techniques to detecting violations in SLAs in hosted virtual
networks. Recall that a SLA in hosted virtual networks con-
sists of three main components that we are concerned with:
control processes are run unmodified, the physical router is
forwarding packets as instructed by the control software, and
the physical router is providing the quality of service agreed
upon. We first discuss techniques used today to monitor
networks not under direct control (e.g., monitoring the SLA
compliance of an ISP). Then we propose extending the in-
terface card to perform much of the functionality, but with
greater accuracy and efficiency.

4.1 Monitoring SLA Compliance of Networks
The SLA between the service provider and the infrastruc-

ture provider has much in common with what ISPs offer
customers today. Today, there is an expectation that paths
are available with certain metrics (e.g., loss, delay, jitter).
This is monitored through measurements performed at the
customer’s sites [23]. As a simple example, the customer
could periodically perform a ping between each site to de-
termine the availability and latency of the path.



Making the assumption that infrastructure providers are
not colluding with one another, we can extend this concept
to the hosted virtual networks model by having each sub-
network check each other sub-network, where a sub-network
is all of the routers in a single infrastructure provider’s net-
work1. Reusing the simple ping example, rather than having
one of the customer’s sites pinging another one of their sites
through the ISP being checked, a virtual router in one in-
frastructure provider would ping a virtual router in another
infrastructure provider going through the network of the in-
frastructure provider being checked.

Of course, checking the data plane assumes knowledge of
how the data plane was supposed to behave. To know this,
we must determine how the data plane was configured by the
control plane. For this we need to log control messages being
sent across infrastructure provider boundaries and replay
this against a simulation of the sub-network and the control
software running on it. This can be used to check that the
sub-network is propagating control messages as expected,
as is done in PeerReview [15]. Any discrepancy between the
messages that should have been received and the messages
that were actually received is a potential indicator of a fault.
This can also be used to determine the way each router’s
data plane was actually configured versus how it should have
been.

4.2 Extending the Interface Card
Using the probing mechanism of the previous section has

a number of limitations in terms of each component of the
SLA. In particular (i) logging of control messages is only
done at the edge of each infrastructure provider’s network,
leading to a computationally expensive task to simulate the
internal operation of that sub-network, (ii) probing from
virtual router to virtual router does not hide measurement
traffic from the infrastructure provider being measured, en-
abling the potential to obfuscate the true quality of the path,
and (iii) the accuracy of determining the path a packet takes
is dependent upon the number of probe points (how many
virtual routers send probe packets to how many other virtual
routers), and therefore as the size of the sub-network being
monitored increases, pinpointing a specific faulty router be-
comes more difficult (making it hard to distinguish between
a fault the infrastructure provider is responsible for and a
bug in the service provider’s own software).

To deal with each of these issues, we propose extending the
functionality of the interface card to perform similar func-
tionality but with more accuracy and requiring less storage
and computation to perform the checks. As this is a only
a proposal at this point, further work is needed to accu-
rately weigh the limitations against the effort of extending
the interface card and the need to trust a third party.

While it’s an understandable concern that assuming an
extension to the network card may be impractical, we feel
that it is indeed reasonable to expect NIC enhancements as
(i) NIC vendors will want to differentiate their product, (ii)
reputable infrastructure providers will want to provide the
monitoring as a service (perhaps at extra cost) to give them
a competitive advantage, and (iii) service providers already
deal with routers from a multitude of vendors and dealing
with multiple NIC logging formats is manageable.

1We assume an entire infrastructure provider can be com-
promised, either through a dishonest infrastructure provider
or an attacker exploiting a vulnerability.

In the following, we discuss each of the extensions:

Log control messages at each interface: Checking
an entire sub-network is difficult and computationally ex-
pensive as the software of the entire sub-network needs to
be simulated to determine any inconsistencies in the control
messages exchanged, and to determine how the data plane
was configured. This, in turn, will lead to a compromise on
the accuracy as checks will performed less often. We can
take the monitoring approach to a finer granularity by do-
ing it at each node. To do this, we propose extending the
functionality of the interface card to perform logging of con-
trol messages (interface card is either the network interface
card for software based routers or the line card for hard-
ware based routers). This places trust in the vendor of the
interface cards.

Securely performing measurements: In addition to
reducing the complexity of performing the checks, extended
capabilities in the data plane are necessary for securely per-
forming the data plane measurements. Packets used for mea-
surement to determine latency (probes or sampled packets)
must be indistinguishable from packets that are not [3][14].
Otherwise, an infrastructure provider could treat the mea-
surement packets favorably (e.g., forward them correctly
with low latency) while the other packets get treated un-
favorably (e.g., dropped). For this we propose the interface
card include support for passive probing. With passive prob-
ing, actual data packets serve as implicit probe packets that
are acknowledged by the end-point of the probe path. Each
end-point must agree how to determine which packets are
used, for example using the same key and applying a hash
of the immutable fields of the packet as done in trajectory
sampling [8]. However, this implies that the key must be
known only to the interface cards and the service provider.
This will require public key cryptography to enable the ser-
vice provider to install a key on each interface card.

Tracing a packet’s path: Support is needed to be able to
trace a packet through the exact path that it takes. This al-
lows us to check the packet was forwarded as instructed and
be able to distinguish between a packet that was dropped
because it was supposed to be dropped (e.g., it was blocked
by a filter) or for another reason. If it is dropped for another
reason, then it should be included in the count against the
SLA characterization of allowable packet loss. Unlike the
control plane, logging each packet is not feasible given the
high data rates. Fortunately, the requirements in this case
are very similar to the IP traceback problem [22], for which
we can use a similar technique.

With IP traceback, a bloom filter is maintained at each
router using multiple hashes over the immutable packet con-
tent. Then, given a particular packet, the path that it
took can be determined by querying the destination’s ad-
jacent routers to see if the bloom filter contains that packet
(and subsequently querying the adjacent routers of those
that do). In our situation, we are more interested in ensur-
ing that packets are being handled correctly (which includes
forwarded along the correct path as well as being correctly
dropped at filter points). This means sampling is done at the
ingress to the network rather than egress so as to include all
packets, not just those that made it all the way through the
network. Note that this does not require the service provider
to provide a key to each device in the network, nor does it
require each key used to be the same, avoiding the complex-
ity of distributing private keys to each router. Bloom filters



track all packets, and each bloom filter can be different since
it only needs to be able to respond to membership queries,
not have the same filter values.

5. PREVENTING TAMPERING
In the previous section, we discussed more traditional

techniques for monitoring compliance with SLAs in network-
ing. However, these mechanisms are limited in that they are
not performing real-time protection but rather detecting vi-
olations after the fact. Additionally, they each have signifi-
cant storage and computation requirements to perform the
off-line checks.

Rather than trying to detect if an infrastructure provider
is in compliance, in this section we use recent advances in
trusted computing and processor architecture to discuss how
a router could be re-architected to have assurances built
in. Here, the architecture has three components — control
plane, data plane, and the communication channel between
them (which can be the virtualization layer). If the con-
trol plane software and the data plane implementation are
both trusted and cannot be tampered, and a secure chan-
nel between the two can be established, then the platform
will behave as advertised and as instructed (by the service
provider’s control software). This is because knowing how
the data plane is configured and that it has not been tam-
pered with means that it is forwarding as instructed with
a given quality of service (per the data sheet based on how
it is configured). In this section we first discuss how this
can be achieved using technology available today and then
discuss an improvement on that architecture by proposing
an extension to a general-purpose microprocessor.

5.1 Trusted Platform Module
A trusted platform module (TPM) [27] is a chip available

today that can be used to measure the integrity of software
at launch. Each layer in the platform performs a measure-
ment of the layer above it before launching the next layer
(e.g., the BIOS measures the OS, the OS measures each ap-
plication), forming a chain of trust. To verify the application
has not been modified, the values stored in the TPM would
contain the measurement which can be checked against the
expected values.

There are two main limitations with this approach2. First,
using a TPM does not protect against any dynamic at-
tacks. It performs a measurement only when an executable
is started, not while it is executing and therefore modifi-
cations to the control processes would not be prevented.
Second, as it is built on a chain of trust, the virtualiza-
tion layer (infrastructure provider) needs to be trusted by
each of the virtual routers (service provider), an approach
taken in Terra [13]. Both malicious attacks by other ser-
vice providers or direct modifications by the infrastructure
provider can go unnoticed. This would enable both the con-
trol plane and the data plane, which is run in the shared
virtualization layer for highest performance, to be dynami-
cally modified. While there have been attempts at using the
TPM while protecting against dynamic attacks, the perfor-
mance penalty was substantial (1 second switching time)

2A third limitation would be the possible vulnerability of the
TPM itself. The Xbox 360 is rumored to include a TPM to
prevent playing pirated games yet mod chips are available
to circumvent that protection.

and limited in functionality (cannot run the entire control
process protected) [20].

However, despite the limitations, given the nature of rout-
ing, we can take advantage of the separation between the
control plane and the data plane in routers. Researchers
have proposed running a centralized control plane which con-
trols the data plane of one or more routers from a remote
server [4] [21]. While proposed for different reasons, that ap-
proach can be used here to allow the control processes to be
run on trusted platforms. In the extreme, the remote control
plane could be run on machines under the control of the ser-
vice provider in its own facilities. In this case, only the data
plane is run in a hosted virtual network platform. Alter-
natively, if the main concern is that the platform is shared
and enables other service providers to attack the virtual-
ization layer, the infrastructure provider could provide the
service provider with dedicated servers for running control
processes, using the TPM for performing integrity checks.
Some hosted cloud computing providers have taken a simi-
lar approach to ensure a more secure platform, dedicating a
server to a single customer [2].

Just as the control plane of one virtual network can be sep-
arated from the shared router, the data plane can also be
separated from the software running on the physical router
(virualization layer and other control processes). This sep-
aration is already present in the commonly used hardware
based routers which perform the forwarding functionality
on the line cards using ASICs, FPGAs, and/or network pro-
cessors. As our threat model assumes that the vendor of
these devices is neutral, and therefore each party mutually
trusts that the device acts accordingly, the actual execution
of forwarding can be trusted.

Forwarding in the data plane can also be achieved in soft-
ware based routers. Rather than having the control pro-
cesses and forwarding functionality co-exist on the same
processor, we can instead have a dedicated processor for
forwarding, attested with the TPM. One of the main issues
with using the TPM is that it performs the attestation at
boot time but does not protect against dynamic attacks.
However, in this case, that is less of a problem since (i) the
data plane is not affected by the vulnerabilities of the vir-
tualization layer (there is no virtualization layer, just the
packet handling functionality), (ii) we can run with high
performance (do not need extra protection mechanisms, as
there is no switching between protection domains), and (iii)
no software other than the forwarding code can run on the
processor (there is less opportunity given to malicious ser-
vice providers).

With physical separation, however, the interaction be-
tween each service provider’s control processes and the data
plane must go through the untrusted virtualization layer or
an untrusted network. For this, one can create a secure
channel between the control process and the line card where
each configuration command sent to the line card is secured.
This can be achieved either through the control process en-
crypting each configuration command using a public key of
the line card, or more efficiently using the public key to es-
tablish a shared private key (e.g., with Diffie-Hellman [7]).
An alternative is to periodically verify the data plane’s table
values by requesting the current state and having the data
plane sign the result.

With both integrity verified control and data planes, and
a secure communication channel between them, the infras-



tructure provider has built in enough mechanism to assure
each of the service providers that the platform is behaving
as advertised and as instructed.

5.2 Security Enhanced Processor
The TPM solution relies on physical separation to pro-

vide an architecture where the service provider can receive
assurances of the integrity of both its control processes as
well as the packet handling functionality. However, this is
not really the ideal platform as it does not take full advan-
tage of the benefits of virtualization technology. Instead,
we should be able to run multiple service providers’ control
processes and the packet handling all on the same processor.
In this section we propose an extension to a general-purpose
processor that enables it to be shared while still providing
assurances of the integrity of the control and data plane.
This follows the recent trend of the TPM existing first as
a co-processor and more recently being integrated into the
chip-set. The next logical step is for security functionality
to be integrated into the processor. Though, simply brining
the TPM on chip is insufficient.

The research community has proposed small extensions
to general-purpose processors to protect the confidentiality
and integrity of software. That is, support such that all pro-
tected software is integrity checked when loaded into cache
from memory and optionally stored in memory in encrypted
form (plain text only in the cache). Such examples include
SP [18], AEGIS [24], and XOM [19]. We focus our discussion
on SP as a concrete example.

With one variant of SP, authority-mode SP [9], an au-
thority can load software onto a device, deploy it in the
field, and ensure that the software cannot be modified or
read even though the physical device may be in the posses-
sion of an adversary. Here, each processor has a non-volatile
register internal to the processor which is used for storing
a private key called the device root key (DRK). This value
is a write-only register (i.e., there is no instruction that al-
lows reading it) that is programmed by the authority in a
secure facility. The purpose of this key is that it is used to
check the integrity of each cache line when it is loaded into
the cache from main memory. For this, when the authority
compiles its software it will tag each cache line with a keyed
hash of that cache line (keyed with the secret key that it
stored as the DRK). This protects the executable from be-
ing modified both before launch and after. Without knowing
the DRK, any modifications to the executable will not pass
the integrity checks when it is loaded into cache during ex-
ecution. SP also protects against any modifications during
execution as well. Whenever a cache line is evicted from
cache a new keyed hash is calculated and written to mem-
ory along with the cache line. Additionally, to make it so
the operating system does not need to be trusted, upon an
interrupt, a keyed hash of the registers is performed and
stored and the registers are encrypted using the DRK and
placed back in the registers they originated from. Then the
operating system can perform a context switch as usual and
has no opportunity to examine or change the values.

There are two main differences in our use of SP to protect
virtual machines that require an extension, which we call
virtual-mode SP. First, in our scenario there are multiple
authorities: each of the service providers as well as the in-
frastructure provider, which can protect its own software. A
simple solution to this is to have multiple DRK registers in

the processor, one for each virtual machine. This, of course,
will place a limit on the number of virtual routers that can
share the same physical router. As there are limited re-
sources such as memory and CPU, there is a practical limit
on the number of virtual machines that can be run anyway.
This extension would require extra bits in each cache line to
mark which DRK is being used. These bits can be assigned
by the virutalization layer at the time the virtual machine is
launched. The service provider does not need to know which
slot it will run in.

The second difference between authority-mode SP and
virtual-mode SP is that authority-mode SP assumes the au-
thority is in physical possession of the device to be able to
program the DRK in a secured environment during device
initialization. In our case, it is not possible for the service
providers to physically access the device. However, public
key cryptography can be used to overcome this limitation
and enable a service provider to install a DRK remotely.
Each processor would include (i) an extra write-only reg-
ister for holding a private key, (ii) an instruction that will
take in an encrypted value to install into one of the DRK
registers, and (iii) circuitry to decrypt the encrypted value
in the install instruction and store it in decrypted form in
one of the DRK slots. The private device key will be written
by the router vendor before selling the router to the infras-
tructure provider. The service provider can then contact the
router vendor to obtain the public key, encrypt their DRK,
and send it to the infrastructure provider along with their
software to execute.

Note that the above does not address availability, as each
of the write-only registers can be overwritten, rendering all
executables unrunnable. However, a virtual router that is
not running is easy to detect and therefore less of a con-
cern than protecting the integrity of the software and data.
However, it is an area that does need to be addressed.

Virtual-mode SP can also be used to protect the data
plane in a software-based router (a hardware-based router
already has a protected data plane). To do this, the packet
handling would be run with a separate authority (having its
own DRK) and be run in the kernel of the virtualization
layer so it can have high performance. This implies that
the service provider and infrastructure provider both need
to trust the forwarding code. This can come from: (i) an in-
frastructure provider that is reputable and where the service
provider just wants protection against dynamic attacks from
other service providers, (ii) an open source implementation,
allowing the service provider to analyze the code and verify
that it is exactly what the infrastructure provider is using,
(iii) an independent, mutually trusted, third party (such as
a router vendor) providing the implementation.

Through these extensions to the authority-mode SP ar-
chitecture, the virtual-mode SP architecture is capable of
supporting our idealized router architecture in a tamper-
resistant manner. As with the original SP architecture, the
virtual-mode SP architecture is minimalist in terms of added
circuitry. The required extra circuitry consists of a small
number of registers along with encryption/decryption logic.
As only portions of the code need to be protected, the en-
cryption/decryption logic will be used infrequently, leading
to minimal impact on performance. The original SP archi-
tecture showed less than a 1% performance hit for the SPEC
benchmark, suggesting a similar overhead for virtual-mode
SP is a reasonable estimate [18].



6. DISCUSSION
Ideally, all routers would have the mechanisms presented

here that prevent violations from occurring in the first place.
This has the advantage that it provides continuous protec-
tion, has no storage requirement, and no extra computation
overhead to perform the necessary checks. However, it is
unrealistic to expect this to be the case. Therefore, service
providers will need to monitor the performance and behavior
of some of their virtual routers. In fact, the solutions are not
mutually exclusive, even on the same router. A hardware-
based router could have a virtual-mode SP for protecting
the control planes and integrate the functionality of the ex-
tended interface card for enabling probing of other routers.

7. CONCLUSIONS
In this paper we described two mechanisms to approach

the problem of accountability in a virtualized and hosted in-
frastructure. In the first approach we used traditional net-
work measurement techniques that are used to monitor the
service received by ISPs. We applied this to hosted virtual
networks and found that they are limited in the accuracy
and efficiency with which they can perform the checks. To
overcome these limitations, we proposed an extension to the
interface card to enable more efficient, accurate, and finer
grained detection capabilities.

In the second approach, rather than detect violations, we
discussed re-architecting a router to build assurances into
the system such that violations are prevented from occurring
in the first place. We first presented a solution based on
the TPM chip, with the limitation that physical separation
is required to actually achieve the desired assurances. We
then proposed an extension to a general-purpose processor
to overcome this limitation, finding that with minimal extra
circuitry, these assurances can be met and the processor can
be shared.

While this is only a first step, accountability in hosted vir-
tual networks is a promising area for future research. With
tamper-resistance built into the platform, or sufficient mea-
surement capabilities, the trust between service provider and
infrastructure provider does not need to be implicit in the
business relationship. This will open the opportunity for
more infrastructure providers to co-exist and achieve future
networks based on hosted virtual networks.
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