
Research Statement (2024)

Eric Keller

1 Introduction

We are seeing the scale of networked applications grow and the number of networked devices explode.
This increased complexity stresses the underlying infrastructure, and those tasked with operating it,
leading to performance, security, and cost challenges. It is my belief that the key to coping with
this is a more programmable infrastructure. With more programmability, we can create abstractions
and software systems which can capitalize on this increased flexibility with an ability to rapidly (and
automatically) adapt the infrastructure to the changing conditions. My research has made (and will
continue to make) significant contributions on both enabling and capitalizing on a more dynamic
and programmable computing and network infrastructure, via such technologies as virtualization,
software-defined networking, FPGAs, and the movement toward cloud based services. In this research
statement, I highlight three thrusts I pursued during my Associate Professorship which exemplify my
overall research1. In each, I discuss several published works as well as highlight some ongoing work.

2 Hardware/Software Co-Design of Network Processing

Central to the concept of increasing the programmability of the network itself, is introducing and
enhancing programmability of the underlying platforms that perform the network processing. On the
hardware side we have switches and network interface cards (NICs) that are now highly programmable,
bringing flexibility to hardware’s inherent high performance. In software, we have operating system
and user level technology for faster packet processing, bringing performance to software’s inherent
flexibility. The key is leveraging each in the most effective way for the particular task. In this thrust,
we focused on three key domains: (i) enhancing security through high-throughput telemetry with rich
analysis, (ii) transparent acceleration of host-based network stacks, and (iii) enhancing resilience in
host and rack-level network for large distributed deep learning applications.

2.1 High-throughput Telemetry with Rich Analytics for Active Security

As an example of leveraging progammability of the network to solve a critical problem, we introduced
active security, a new methodology we pioneered [8] which introduces programmatic control within a
novel feedback loop into the network defense infrastructure. The motivation behind active security
is to streamline the security response and feedback mechanisms with minimal human interaction. A
key challenge here is achieving rich processing capabilities across complex operations and complete
telemetry information while doing so at high traffic rates (multi-terabit). In this work, we introduced
a number of novel architectures exploring hardware software tradeoffs.

TurboFlow (Eurosys 2018) [22] (Best Student Paper) - Motivated by the desire for practical
high coverage flow monitoring without sacrificing information richness, we introduced TurboFlow, a
flow record (FR) generator optimized for programmable switches. Rather than trying to shoehorn flow
record generation into either the programmable forwarding engine (PFE) or CPU, we decompose it
into two complementary parts that are well suited for the individual processors. The PFE produces
microflow records (mFRs) that summarize active flows over short timescales. Focusing on mFRs
reduces the set of concurrently active flows to lower memory requirements and permits simpler data
structures that map well to PFE hardware. A mFR aggregator, running on the switch CPU, stitches
the mFRs together into complete flow records, using a key value data structure optimized to leverage

1Note: some works started at the the tail end of my Assistant Professorship and continued into the time period of
my Associate Professorship.

1

performance features in modern CPUs. Together, the resulting design allows TurboFlow to support
multi-terabit workloads on commodity programmable switches, enabling high coverage flow monitoring
that is both information rich and cost effective.

*Flow (USENIX ATC 2018) [23] - An important but unaddressed practical requirement in high
speed networks is supporting concurrent network monitoring applications with diverse and potentially
dynamic measurement objectives. We introduced *Flow, a switch accelerated telemetry system for
efficient, concurrent, and dynamic measurement. *Flow places parts of the select and grouping logic
that are common to all queries into a match+action pipeline in the PFE and exports a stream of
records that software can compute a diverse range of custom streaming statistics from. There are two
key innovations which we introduced in *Flow that makes it possible for this to work at high scales,
without loss of information. First, we introduced a new record format for telemetry data, Grouped
Packet Vectors, which compresses packet records without losing their information. It does this
through de-duplication where a GPV contains a flow key, e.g., IP 5-tuple, and a variable-length list of
packet feature tuples, e.g., timestamps and sizes, from a sequence of packets in that flow. From this,
applications have complete information, and the GPVs reduce both the bandwidth and event rate,
making it substantially more practical. Generating these GPVs in the data plane is challenging due
to the variable length. The second innovation is a Dynamic in-PFE Cache that maps packets to
GPVs at line rate in the PFE forwarding pipeline. The key here is that this introduced a line rate
memory pool to support variable sized entries. Ultimately, dynamic memory allocation increases the
average number of packet feature tuples that accumulate in a GPV before it needs to be evicted, and
makes more efficient use of resources in the hardware.

JetStream (TNSM 2021) [20, 19] - To complement *Flow, we need to be able to process the
flow records across different applications at high scale. For this, we introduced Jetstream, which uses a
hardware-software co-design to efficiently analyze hundreds of millions of packets per second for multi-
ple simultaneous applications allowing for network- wide, packet-level analytics without compromises.
Our design is based on two key strategies. The first builds on the work in *Flow where PFEs export a
stream of grouped packet vectors (GPVs) to software processors. We complement that with adding a
load balancing component to the PFE to direct specific GPVs to specific NICs and programming the
NICs to direct specific GPVs to specific cores. Our second strategy is to carefully optimize Jetstream’s
software component to exploit both the properties of network analytics workloads and our partition-
ing between hardware and software. Jetstream’s analytics pipelines (which run application-specific
logic) can be designed to operate independently of each other. This eliminates resource contention
to improve both performance and scalability. Finally, guided by workload characteristics, we apply
a series of domain-specific system optimizations. With this design, we showed for real applications
that Jetstream is able to process between 5.4 and 15.9 million packets per core and scales linearly
with increased cores (or between 86.4 and 254.4 million packets per second on a 16-core server). This
represents a 184x and 24x throughput improvement over two state of the art systems.

eBPF and SmartNIC offload (IEEE NFV-SDN 2022) [4] (Best Paper)While some analyt-
ics tasks can be offloaded to programmable switches, ultimately, telemetry data needs to be processed
by analytics applications in software. To reduce the resource footprint of software network analytics,
we introduced a novel network monitoring primitive that consolidates logic which all monitoring ap-
plications require. The primitive can (partially) be offloaded to a SmartNIC and triggers applications
only when required based on high-level traffic metrics, avoiding unnecessary and redundant computa-
tions. Our evaluation showed that the combination of conditional execution of analytics tasks and the
use of modern packet I/O technologies (eBPF) not relying on expensive busy polling (as in DPDK)
significantly reduces the resource footprint of performing continuous network analytics.

2.2 Transparent Network Acceleration

Software-based packet processing is widely adopted across a number of use cases, such as data-center
load balancing, virtualized networking between containers, multi-cloud overlay networking, and 5G in-
frastructures. To overcome inefficiencies in the Linux networking stack, and enhance packet processing
programmability, user space network processing toolkits, such as DPDK, have been introduced and
are gaining in popularity. While we cannot question the high performance capabilities of the kernel
bypass approach in the network functions world, we recognize that the Linux kernel provides a rich
ecosystem with an efficient resource management and an effective resource sharing ability. In our work,
we explored approaches to retain the rich capabilities of Linux, while accelerating the network stack.

2

Accelerating packet processing in Linux with LinuxFP (ICDCS 2024) [3, 1] - In this
work, we introduced transparent acceleration into the Linux networking stack. To do so, we build
on years of research in creating high-performance software-based packet processing systems. Rather
than treating these technologies as alternative pipelines, we leverage the technology to create explicit
fast paths in the Linux kernel. With this, Linux still serves as a complete implementation of all its
supported protocols, but frequent operations on the critical path can be transparently handled by a
fast path. We implement a controller that continuously introspects the Linux kernel to determine
exactly what packet processing functionality is currently configured. The controller then synthesizes
and deploys a minimal fast past into the packet processing pipeline that only implements functionality
that is currently needed. In this way, common command line tools, such as brctl, control plane software,
such as FRRouting (FRR), and higher-level management frameworks such as Kubernetes and Ansible,
work without modification and transparently benefit from a faster network data plane. With this, we
showed performance improvements over Linux for packet forwarding of 77%, without any modification
to the management interface.

Accelerate the network TCP stack (IEEE NFV-SDN 2020) [2] - While LinuxFP accelerated
the packet processing, we also looked to improve the performance of the TCP stack as well. We
leveraged a high-performance user space TCP stack (mTCP) and recent (at the time) additions to the
Linux kernel to propose a hybrid approach (kernel-user space) to accelerate SDN/NFV deployments
leveraging services of the reliable transport layer (i.e., stateful middleboxes, Layer 7 network functions
and applications). Our results show that this approach enables high- performance, high CPU efficiency,
and enhanced integration with the kernel ecosystem. By having more efficient CPU usage, NFV
applications can have more CPU cycles available to run the network functions and applications logic.
We show that for a CPU intense application, using our system enabled it to have up to 64% more
throughput than the previous implementation (with mTCP using DPDK).

2.3 Resilient Networks for Machine Learning

In ongoing work, we are continuing the theme of accelerating Linux networking and in this case
capitalizing on an ability to transparently offload to a SmartNIC (that supports the Linux switchdev
driver, which many do) to enhance the resilience of networks for distributed deep learning workloads.
This is especially important due to two driving trends. The first is that there is a movement towards
using Remote Direct Memory Access (RDMA) for lower latency and lower overhead communication.
The second is that there is an ever increasing size of models and training datasets, thus requiring
larger and larger networks (e.g., Facebook recently described their investment in an infrastructure
with 24,000 GPUs). Together, these greatly increase the likelihood of failure while simultaneously
increasing the cost of a failure. While there exists technology to handle failures of workers (at the
application level) and in the datacenter network, the edge of the network (i.e., the host network port
and NIC, and Top of Rack switches) does not have an adequate approach to dealing with failure.

Instead, failure at the network edge leads to communication errors and is assumed to be handled by
application level fault handling. But, application level fault handling is not terribly graceful and leads
to repeated work and extra training time. This is necessary for full host failures where the worker is
actually unavailable, but when the host is working but unavailable due to network connectivity, this
is wasteful and unnecessary. The problem is that leveraging redundancy at the network edge (host
and rack level) with RDMA is a challenge. Since RDMA is inherently a hardware level protocol, it
necessitates a programming model that is more closely aligned to the hardware. For applications to
adequately handle failure, they would need to become more network aware to detect the failure and
learn additional devices and paths, and be able to react to failure – all of which would be significant
to support.

We are introducing a novel architecture for resilient host and rack networks that is completely
transparent to applications and works with commodity hardware. This based on four core architectural
principles: (i) Transparent, Hardware Offloaded Resilience, where we create port representors that
applications bind to, and configure Linux networking with tc for directing from physical ports to this
representor (and all of this gets offloaded to the NIC through the switchdev driver). (ii) Automated
Host-level Path Selection, where we leverage standard data center protocols (BGP, EVPN, BFD) to
learn and select network paths, and detect and react to failure. (iii) Avoidance of Soft Failures, where
we assign each host with multiple IP addresses, detect path quality issues with explicit congestion
notification (ECN) and RDMA counters, and use that to alter the packet to alter its ECMP path. (iv)

3

Scaling to large networks, where we introduce new algorithms to perform monitoring of the Linux kernel
with provably correct convergence, and rule consolidation to accelerate time to configure. Preliminary
results are showing that this can significantly improve the performance of distributed deep learning
applications in the face of failure.

3 Elastic Resource Scaling in the Cloud

Cloud computing has rapidly expanded, both in the public cloud where cloud providers offer diverse
services capable of supporting many types of applications, and in the private clouds where companies
can manage their infrastructure more effectively. One of the key properties of cloud computing is scala-
bility. In practice, providing fine-grained, dynamic, and elastic scaling in a cloud service is challenging
due to the fact that limitations are inherited from lower levels: the OS is bounded by the machine, the
container is bounded by the OS, and so on. In this line of research, we examine these boundaries and
seek to decouple them towards more efficient scalability. In particular we look at these boundaries: (i)
Network Function - (virtual) appliance, (ii) Container - OS, and (iii) OS - Hardware.

3.1 Stateless Network Functions

Network functions, such as firewalls, load balancers, and routers, are important components in every
network by providing the ability to secure, monitor, and improve the efficiency of networks. While
traditionally deployed as physical appliances, industry has recognized the need for more programma-
bility and introduced the Network Functions Virtualization (NFV) movement (enabled and inspired
by work from the academic community, including my own research during my PhD [17, 24, 15, 18, 16]).
With NFV, network functions no longer have to run on proprietary hardware, but can run in software,
on commodity servers, in a virtualized environment, with high throughput. Moving away from fixed
physical appliances holds the promise that the network can achieve agility, but, without breaking the
tight coupling of network functions to their underlying appliance form, this promise will go unmet.
The central issue revolves around dealing with the state that is locked into the network functions.
Network functions store state locally and use that as part of processing traffic. In tightly coupling
the state and the processing, the elasticity, resilience, and ability to handle other challenges such as
asymmetric / multipath routing and software updates becomes fundamentally limited.

In our research (NSDI 2017) [14, 13], we introduced a disaggregated architecture where, instead of
maintaining state in the individual network functions themselves, the state is maintained separately
and the network functions can access that state from anywhere and at any time through a well defined
interface. The challenges include the fact that the processing of each packet/message would have an
added latency, there can be a high rate of requests to the data store (per packet or message), and
concurrent access to shared state across physical elements adds additional complexity. We overcame
these challenges through a combination of leveraging modern technology from various domains (such as
high performance computing) and domain specific optimizations (such as capitalizing on the nature of
network traffic). We demonstrated that this proposed architecture is indeed possible, and we matched
the throughput of other software-based solutions, while uniquely being able to seamlessly scale in and
out (with zero packets dropped or connections broken), and instantaneously recover from failure (with
no perceptible disruption) without relying on a complete duplication of every appliance on the network.

Stateless, Inc.: As a researcher, impact is the ultimate measure of success. Traditionally, this is
measured in terms of number of publications (and citation counts), but I believe that impact is broader
than that and can come in many forms. Along with the main Ph.D. student behind this research
(Murad Kablan, who has since graduated), I have formed a company (Stateless) to commercialize
this technology (licensed from the University of Colorado). Stateless is now 7 years old, received
about $1M in SBIR grants along with over $20M in venture capital funding from premier VCs such
as Foundry Group and Drive Capital. Our first product targeted data center operators and network
service providers to equip them with a simple, scalable, and evolvable platform to offer new network
services, such as connecting to and between public clouds. We have had numerous proof-of-concept
and/or commercial deployments with some of the largest operators in the world. With the explosive
growth of AI services, and the inherent need to move data around, we have recently launched a new
product, AI Fabric, which leverages our technology to build a multi-cloud network fabric that is secure,

4

cost effective, and performant. Companies can use AI Fabric simply and seamlessly to connect their
data and applications to various AI services.

3.2 Event-driven, Sub-second Container Resource Allocation

Containerized infrastructure is quickly becoming a preferred method of deploying applications. In
these deployments, per-container resources limits are used to prevent interference between containers
and unchecked resource usage. Setting container resource limits is a trade-off between application
performance and efficient use of underlying system resources – setting them too high leads to wasted /
unused resources, setting them too low leads to performance issues (CPU throttling or Out of Memory
(OOM) errors). Due to this trade-off, setting accurate limits is important and in practice, it is also
difficult. Recent works set container CPU and memory limits by automatically scaling containers
based on past resource usage. However, these systems are heavy weight and run on coarse-grained
time scales, resulting in poor performance when predictions are incorrect.

We introduced Escra (ICDCS 2022 [7]), a container orchestrator that enables fine-grained, event-
based resource allocation for a single container and distributed resource allocation to manage a col-
lection of containers. Escra targets limitations in the API between the OS and container layers to
provide fine-grained, near real-time adjustments to container resource limits for CPU and memory.
Specifically, We expose fine-grained telemetry data from Linux’s Completely Fair Scheduler (CFS).
This allows Escra to quickly track and react to actual resource needs, resulting in both high per-
formance (low latency and high throughput) and low cost (minimal slack). Further, we implement
event-based memory scaling, which allows Escra to increase a container’s memory upon an OOM event
rather than allow the container to be killed. Using both microservice and serverless applications, we
reduce application latency by up to 96% while increasing throughput up to 3.2x over a state of the art
container orchestrator. These low latency and high throughput rates are achieved while simultaneously
reducing the median CPU and memory slack by over 10x and 2.5x, respectively.

3.3 Distributed Node replicated Operating System

Even with Escra, we are still bound by the limitations imposed by the OS and machine – e.g., you
can’t allocate 8 CPUs to a container/process if the machine only has 2 CPUs. When developers need
more resources than available on one server, they must design bespoke distributed systems or use
distributed frameworks targeted at specific use cases. These approaches are specialized and hard to
use, compared to programming applications for one host.

In ongoing work, we are introducing DiNOS (DistributedNode replicatedOS), an operating system
(OS) that spans multiple hosts and provides applications and processes with the abstraction of a single
system image. With this approach of breaking down the barriers between the OS and the underlying
hardware, the developer can access the aggregate resources of many hosts with the convenience and
generality of the one-host programming model. In doing so, a posix-style process can spawn threads
that run on different hosts, and it can allocate memory that comes from different hosts.

There is much prior work on realizing such a system, including work on cluster systems, distributed
operating systems, and distributed shared memory. What distinguishes our work is the use of new
hardware that provides sharing of host memory within a rack: a processor on one host can issue
loads and stores of memory on another host, and these accesses are cache-coherent. This can be
made possible with recent technologies, such as CXL. With that, realizing DiNOS brings a number
of challenges. First, DiNOS must minimize the overheads that the kernel imposes on processes due
to the distributed nature of the OS (e.g., synchronization and locking overhead when accessing kernel
data structures, accesses to page tables, etc.). Second, remote memory accesses are slower and affect
processes differently; DiNOS must support a wide range of CPU and memory scheduling policies
including colocation of compute and data for processes that care. Third, DiNOS must isolate processes
and the kernel from failures: if a host crashes, it should stop only processes that use resources from
that host, not every process, and not the OS. Fourth, on the networking side, this raises new challenges
with the underlying abstractions. What does it mean to have a socket that spans multiple hosts?

We are addressing these challenges, and believe we have a unique and novel architecture. One key
contribution is a means to efficiently replicate kernel state between hosts. Another is introducing new
networking abstractions for applications.

5

4 Enhancing Internet Security around the Complexities of
Network Service Providers

In this research direction, we explore the broad topic of Internet Security, with a specific focus on
unique complexities of network service providers. We first discuss the role of incentives in adoption
of technology to secure the Internet, then present a line of research on the use of neural networks in
traffic analysis, and how to evade that analysis.

4.1 Flipping Internet Security with a Focus on Incentives

Despite many advances in network security over the past couple of decades, the Internet continues to
be plagued by security challenges for both consumers and the Internet as a whole. In this research
direction, we investigated the role of incentivization (or lack thereof) as a primary driving factor for
the adoption of security solutions.

Home Gateway (ACM CSUR 2023 [21]): We first conducted a retrospective assessment of
consumer gateway security surrounding the role of network address translation (NAT), which we use
to identify overarching trends, pitfalls, and missed opportunities for stronger security outcomes. We
note that while a perimeter based security model afforded by NAT has never been a strong security
approach, the simplicity, default-deny baseline behavior, and uniformity of design necessitated by
address scarcity all served as strong incentives for deployment and use.

With the broad availability of addresses under IPv6, manufacturers are no longer bound by the
default-deny design that NAT necessitated. Whether or not manufacturers are incentivized to continue
offering a comparable default security baseline, and do so effectively, is unclear. To answer this question,
we performed an assessment of IPv6 implementation found in ten consumer gateways. What we found
is that many of the same security pitfalls surrounding NAT are being repeated, demonstrating that
the need for security is not a strong incentive for actual implementation.

Internet Routing (ongoing): We then are considering what an incentivized approach to encour-
age security development and adoption could look like. For this we shift focus from the home gateway
environment to the Border Gateway Protocol (BGP). Designed over thirty years ago, the Border
Gateway Protocol (BGP) remains a ubiquitous and necessary protocol to support routing across the
Internet. To address well documented security shortcomings, a number of approaches to strengthen
BGP security have been proposed. One thing that stands out about each proposal is that they largely
ignore incentives for deployment. The end result, unsurprisingly, is stagnant adoption.

In ongoing work, we believe the network research community needs to flip this problem around—
we need to understand that network providers are a business first and build security solutions around
that fact. From a business perspective, solutions that ease management or troubleshooting, enhance
business value, or enable efficiencies all serve as strong incentives for adoption. To demonstrate this
approach, we are building a real-time Internet routing database, named DND-Db (a Democratized
Network Data Database). DND-Db serves as a foundational building block, which offers increased vis-
ibility for network administrators to manage, troubleshoot, and leverage network insights for business
actions – key incentives for a business. In our initial prototype, we have been able to demonstrate
that in adopting DnD-Db, a network provider can greatly enhance a key business objective – meeting
service level agreements (SLAs) in the most cost effective manner. We also show that equivalent func-
tionality to RPKI (route origin validation) and BGPsec (path validation) can be achieved, and even
new capabilities can be seamlessly added.

4.2 Strengthening (or Evading) Traffic Analysis

Traffic analysis is important for network operators to understand threats in their network. At the same
time, network providers can be subject to government agencies to monitor users of the network. An
emerging means to perform analysis is through neural networks. We explore the vulnerability of such
work, and how to make it more robust and practical. We then explore how we could evade analysis of
the meta-data that is available to 5G network operators, for users to more safely use 5G networks.

6

4.2.1 Detecting Anomalies in Network Systems by Leveraging Neural Networks

Recent trends have given rise to network intrusion and detection systems (NIDS) built on neural
networks. These systems can analyze traffic using packet or flow-level features, and can outperform
(especially with unseen attacks) signature based analysis. However, it has been shown that neural
networks are vulnerable to adversarial example attacks in other domains. These are small perturbations
of the input that can bypass or purposely alter the classification. In the case of images, this might be
changing a few pixels (imperceptible to the human eye) such that the classifier misclassifies a specific
person as a different person or hides that person all together. In our work, we introduced foundational
techniques for creating adversarial examples in network traffic, and making the neural network based
NIDS more practical and more robust in an adversarial setting. Interestingly, at the time, this line of
work seemed like an academic study, as doing this type of inference at high rates was not practical.
Recent work on AI inference on programmable switches is showing that these can actually be done at
terabit rates, which makes the impact of this work much more important now.

Evading Neural Network based NIDS (BigDAMA 2019 [9]): Generating adversarial ex-
amples for network traffic analysis is uniquely constrained by two key factors: (i) we must retain
the network protocol correctness, and (ii) we must retain the attack’s semantics. In our work, we
introduced techniques to craft adversarial examples for networks by identifying traffic manipulations
that can change the network features but remain within the constraints above. We demonstrated on
existing NIDS and large network traffic datasets that this technique is highly effective.

Making more robust to adversarial examples (IEEE NFV-SDN 2020 [10]) The deter-
ministic behavior of the previously proposed anomaly-based NIDS makes it easy to craft adversarial
examples against them. We introduced Reconstruction from Partial Observation (RePO) [10] as a
new method to build a more accurate NIDS which is also more robust in the presence of adversarial
examples by utilizing denoising autoencoders and combining the inputs with multiple random masks
before feeding them into the model. Our evaluation showed a 45% improvement in detection accuracy
in an adversarial setting compared to other recently proposed systems.

Overcoming the challenge of training (IEEE TNSM 2022 [12, 11]): Deep learning models
have shown their full potential in other tasks such as image classification, sentiment analysis, etc., when
they were trained on labeled datasets. Training NIDS in a supervised manner is not a straightforward
task. The problem is that labeling a huge dataset consisting of billions of packets is expensive, time-
consuming and needs a human in the loop. Ideally, we would like to label a small portion of network
traffic that includes some network attacks and be able to detect most types of attacks, including unseen
attacks in the future, without a need to label them directly. We introduced Proportional Progressive
Pseudo Labeling (PPPL) [12, 11], a domain adaptation technique that works across different input
types (including network traffic), with much greater generality than existing techniques (which don’t
apply to network traffic well, or at all). Key to PPPL is that it tries to minimize the number of target
samples that will align with a wrong class by excluding uncertain samples from the training set at the
beginning of the training procedure and progressively bring them back into the training loop with a
weight proportional to their certainty. Our experiments show that while PPPL is capable of improving
the accuracy of image classifiers on visual domain adaptation tasks as good as state-of-the-art methods,
it significantly outperforms them on other tasks with up to 62% improvement for anomaly detection
in network traffic based on the F1 score.

4.2.2 5G Networks

Following from this line of work, in ongoing work, we are exploring the case of malicious network
providers performing sophisticated traffic analysis (namely, in 5G networks). This can be a safety issue
for individuals or organizations traveling in a foreign country where, for example, government agencies
compel network operators to monitor users on the network. Data traffic is commonly encrypted, but
meta-data is not. With this, we are exploring a set of technologies specific to evading traffic analysis
in 5G networks – ranging from being able to swap identities (e.g., hardware identifiers) automatically,
introduce personas (to make one user look like another), and activity shaping (coordination between
multiple users to hide or fake an event). Also, we are ensuring the security of this through trusted
execution environments, building on our past work on flexible secure hardware [6, 5]. This is part of
the NSF Convergence Accelerator program, where we are exploring both the technical viability and
the commercial viability (early indications are that there is strong commercial potential).

7

References

[1] M. Abranches, E. Hunhoff, R. Eswara, O. Michel, and E. Keller. LinuxFP: Transparently Accel-
erating Linux Networking. In IEEE International Conference on Distributed Computing Systems
(ICDCS), 2024.

[2] M. Abranches and E. Keller. A Userspace Transport Stack Doesn’t Have to Mean Losing Linux
Processing. In IEEE Conference on Network Function Virtualization and Software Defined Net-
works (NFV-SDN), 2020.

[3] M. Abranches, O. Michel, and E. Keller. Getting back what was lost in the era of high-speed
software packet processing. In ACM Workshop on Hot Topics in Networks (HotNets), 2022.

[4] M. Abranches, O. Michel, E. Keller, and S. Schmid. Efficient Network Monitoring Applications in
the Kernel with eBPF and XDP. In IEEE Conference on Network Functions Virtualization and
Software-Defined Networking (IEEE NFV-SDN), Nov. 2021.

[5] A. Coughlin, G. Cusack, J. Wampler, E. Keller, and E. Wustrow. Breaking the Trust Dependence
on Third Party Processes for Reconfigurable Secure Hardware. In ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), Feb. 2019.

[6] M. Coughlin, E. Keller, and E. Wustrow. Trusted Click: Overcoming Security Issues of NFV in
the Cloud. In Proceedings of the ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization (SDN-NFV Sec), SDN-NFVSec ’17, 2017.

[7] G. Cusack, M. Nazari, S. Goodarzy, E. Hunhoff, P. Oberai, E. Keller, E. Rozner, and R. Han. Es-
cra: Event-driven, Sub-second Container Resource Allocation. In IEEE International Conference
on Distributed Computing Systems (ICDCS), July 2022.

[8] R. Hand, M. Ton, and E. Keller. Active security. In Proc Workshop on Hot Topics in Networks
(HotNets), 2013.

[9] M. Hashemi, G. Cusack, and E. Keller. Towards Evaluation of NIDSs in Adversarial Setting. In
ACM CoNEXT Workshop on Big DAta, Machine Learning and Artificial Intelligence for Data
Communication Networks (Big-DAMA), Dec. 2019.

[10] M. J. Hashemi and E. Keller. Enhancing robustness against adversarial examples in network
intrusion detection systems. In IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), Nov. 2020.

[11] M. J. Hashemi and E. Keller. General domain adaptation through proportional progressive pseudo
labeling. In IEEE International Conference on Big Data (BigData), Dec. 2020.

[12] M. J. Hashemi, E. Keller, and S. Tizpaz-Niari. Detecting unseen anomalies in network systems by
leveraging neural networks. IEEE Transactions on Network and Service Management (TNSM),
19(3), 2022.

[13] M. Kablan, A. Alsudais, E. Keller, and F. Le. Stateless Network Functions: Breaking the Tight
Coupling of State and Processing. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), Boston, MA, 2017.

[14] M. Kablan, B. Caldwell, R. Han, H. Jamjoom, and E. Keller. Stateless network functions. In Proc.
Workshop on Hot Topics in Middleboxes and Network Function Virtualization (HotMiddlebox),
Aug. 2015.

[15] E. Keller and E. Green. Virtualizing the data plane through source code merging. In
Proc.Workshop on Programmable Routers for the Extensible Services of Tomorrow (PRESTO),
Aug. 2008.

[16] E. Keller and J. Rexford. The ’Platform as a Service’ model for networking. In Proc. In-
ternet Network Management Workshop and Workshop on Research in Enterprise Networking
(INM/WREN), 2010.

8

[17] E. Keller, J. Rexford, and J. van der Merwe. Seamless BGP Migration with Router Grafting. In
Proc. Networked Systems Design and Implementation (NSDI), 2010.

[18] E. Keller, M. Yu, M. Caesar, and J. Rexford. Virtually Eliminating Router Bugs. In Proc.
International Conference on emerging Networking EXperiments and Technologies (CoNEXT),
2009.

[19] O. Michel, J. Sonchack, G. Cusack, M. Nazari, E. Keller, and J. M. Smith. Software packet-
level network analytics at cloud scale. IEEE TRANSACTIONS ON NETWORK AND SERVICE
MANAGEMENT, 18(1):597–610, 2021.

[20] O. Michel, J. Sonchack, E. Keller, and J. M. Smith. Packet-Level Analytics in Software with-
out Compromises. In 10th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud),
Boston, MA, 2018.

[21] K. Olson, J. Wampler, and E. Keller. Doomed to repeat with ipv6? characterization of nat-centric
security in soho routers. ACM Computing Surveys, 55(14s), July 2023.

[22] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith. Turboflow: Information Rich Flow Record
Generation on Commodity Switches. In Proceedings of the Thirteenth EuroSys Conference, 2018.

[23] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith. Scaling Hardware Accelerated
Network Monitoring to Concurrent and Dynamic Queries With *Flow. In 2018 USENIX Annual
Technical Conference (ATC), Boston, MA, 2018.

[24] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford. Virtual routers on the move:
live router migration as a network-management primitive. In Proc. ACM SIGCOMM, 2008.

9

